MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Visualization version   GIF version

Theorem dvntaylp 23874
Description: The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp.a (𝜑𝐴𝑆)
dvntaylp.m (𝜑𝑀 ∈ ℕ0)
dvntaylp.n (𝜑𝑁 ∈ ℕ0)
dvntaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
Assertion
Ref Expression
dvntaylp (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))

Proof of Theorem dvntaylp
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
2 nn0uz 11557 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2697 . . . 4 (𝜑𝑀 ∈ (ℤ‘0))
4 eluzfz2b 12179 . . . 4 (𝑀 ∈ (ℤ‘0) ↔ 𝑀 ∈ (0...𝑀))
53, 4sylib 206 . . 3 (𝜑𝑀 ∈ (0...𝑀))
6 fveq2 6088 . . . . . 6 (𝑚 = 0 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0))
7 fveq2 6088 . . . . . . . 8 (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0))
87oveq2d 6543 . . . . . . 7 (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)))
9 oveq2 6535 . . . . . . . 8 (𝑚 = 0 → (𝑀𝑚) = (𝑀 − 0))
109oveq2d 6543 . . . . . . 7 (𝑚 = 0 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − 0)))
11 eqidd 2610 . . . . . . 7 (𝑚 = 0 → 𝐵 = 𝐵)
128, 10, 11oveq123d 6548 . . . . . 6 (𝑚 = 0 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
136, 12eqeq12d 2624 . . . . 5 (𝑚 = 0 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
1413imbi2d 328 . . . 4 (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))))
15 fveq2 6088 . . . . . 6 (𝑚 = 𝑛 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))
16 fveq2 6088 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛))
1716oveq2d 6543 . . . . . . 7 (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛)))
18 oveq2 6535 . . . . . . . 8 (𝑚 = 𝑛 → (𝑀𝑚) = (𝑀𝑛))
1918oveq2d 6543 . . . . . . 7 (𝑚 = 𝑛 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑛)))
20 eqidd 2610 . . . . . . 7 (𝑚 = 𝑛𝐵 = 𝐵)
2117, 19, 20oveq123d 6548 . . . . . 6 (𝑚 = 𝑛 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
2215, 21eqeq12d 2624 . . . . 5 (𝑚 = 𝑛 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
2322imbi2d 328 . . . 4 (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
24 fveq2 6088 . . . . . 6 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)))
25 fveq2 6088 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))
2625oveq2d 6543 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
27 oveq2 6535 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑀𝑚) = (𝑀 − (𝑛 + 1)))
2827oveq2d 6543 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1))))
29 eqidd 2610 . . . . . . 7 (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵)
3026, 28, 29oveq123d 6548 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
3124, 30eqeq12d 2624 . . . . 5 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
3231imbi2d 328 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
33 fveq2 6088 . . . . . 6 (𝑚 = 𝑀 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀))
34 fveq2 6088 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀))
3534oveq2d 6543 . . . . . . 7 (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀)))
36 oveq2 6535 . . . . . . . 8 (𝑚 = 𝑀 → (𝑀𝑚) = (𝑀𝑀))
3736oveq2d 6543 . . . . . . 7 (𝑚 = 𝑀 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑀)))
38 eqidd 2610 . . . . . . 7 (𝑚 = 𝑀𝐵 = 𝐵)
3935, 37, 38oveq123d 6548 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
4033, 39eqeq12d 2624 . . . . 5 (𝑚 = 𝑀 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
4140imbi2d 328 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))))
42 ssid 3586 . . . . . . . 8 ℂ ⊆ ℂ
4342a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
44 mapsspm 7755 . . . . . . . 8 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
45 dvntaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
46 dvntaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
47 dvntaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
48 dvntaylp.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4948, 1nn0addcld 11205 . . . . . . . . . 10 (𝜑 → (𝑁 + 𝑀) ∈ ℕ0)
50 dvntaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
51 eqid 2609 . . . . . . . . . 10 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)
5245, 46, 47, 49, 50, 51taylpf 23869 . . . . . . . . 9 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
53 cnex 9874 . . . . . . . . . 10 ℂ ∈ V
5453, 53elmap 7750 . . . . . . . . 9 (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
5552, 54sylibr 222 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ))
5644, 55sseldi 3565 . . . . . . 7 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
57 dvn0 23438 . . . . . . 7 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
5843, 56, 57syl2anc 690 . . . . . 6 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
59 recnprss 23419 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
6045, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6153a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
62 elpm2r 7739 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6361, 45, 46, 47, 62syl22anc 1318 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
64 dvn0 23438 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6560, 63, 64syl2anc 690 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6665oveq2d 6543 . . . . . . 7 (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹))
671nn0cnd 11203 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
6867subid1d 10233 . . . . . . . 8 (𝜑 → (𝑀 − 0) = 𝑀)
6968oveq2d 6543 . . . . . . 7 (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀))
70 eqidd 2610 . . . . . . 7 (𝜑𝐵 = 𝐵)
7166, 69, 70oveq123d 6548 . . . . . 6 (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
7258, 71eqtr4d 2646 . . . . 5 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
7372a1i 11 . . . 4 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
74 oveq2 6535 . . . . . . 7 (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
7542a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
7656adantr 479 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
77 elfzouz 12301 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (ℤ‘0))
7877adantl 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (ℤ‘0))
7978, 2syl6eleqr 2698 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0)
80 dvnp1 23439 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8175, 76, 79, 80syl3anc 1317 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8245adantr 479 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
8363adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
84 dvnf 23441 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
8582, 83, 79, 84syl3anc 1317 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
86 dvnbss 23442 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8782, 83, 79, 86syl3anc 1317 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
88 fdm 5950 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
8946, 88syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐴)
9089adantr 479 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴)
9187, 90sseqtrd 3603 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
9247adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐴𝑆)
9391, 92sstrd 3577 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆)
9448adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℕ0)
95 fzofzp1 12389 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀))
9695adantl 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀))
97 fznn0sub 12202 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9994, 98nn0addcld 11205 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈ ℕ0)
10050adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
101 elfzofz 12312 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀))
102101adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀))
103 fznn0sub 12202 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑀) → (𝑀𝑛) ∈ ℕ0)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℕ0)
10594, 104nn0addcld 11205 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀𝑛)) ∈ ℕ0)
106 dvnadd 23443 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑛 ∈ ℕ0 ∧ (𝑁 + (𝑀𝑛)) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10782, 83, 79, 105, 106syl22anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10848nn0cnd 11203 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
109108adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ)
11098nn0cnd 11203 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ)
111 1cnd 9913 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ)
112109, 110, 111addassd 9919 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)))
11367adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ)
11479nn0cnd 11203 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ)
115113, 114, 111nppcan2d 10270 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀𝑛))
116115oveq2d 6543 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀𝑛)))
117112, 116eqtrd 2643 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀𝑛)))
118117fveq2d 6092 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))))
119114, 113pncan3d 10247 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀𝑛)) = 𝑀)
120119oveq2d 6543 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑁 + 𝑀))
121113, 114subcld 10244 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℂ)
122109, 114, 121add12d 10114 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑛 + (𝑁 + (𝑀𝑛))))
123120, 122eqtr3d 2645 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀𝑛))))
124123fveq2d 6092 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
125107, 118, 1243eqtr4d 2653 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
126125dmeqd 5235 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
127100, 126eleqtrrd 2690 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)))
12882, 85, 93, 99, 127dvtaylp 23873 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵))
129117oveq1d 6542 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
130129oveq2d 6543 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13160adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
132 dvnp1 23439 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
133131, 83, 79, 132syl3anc 1317 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
134133oveq2d 6543 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))))
135134eqcomd 2615 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
136135oveqd 6544 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
137128, 130, 1363eqtr3rd 2652 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13881, 137eqeq12d 2624 . . . . . . 7 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
13974, 138syl5ibr 234 . . . . . 6 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
140139expcom 449 . . . . 5 (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
141140a2d 29 . . . 4 (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
14214, 23, 32, 41, 73, 141fzind2 12406 . . 3 (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
1435, 142mpcom 37 . 2 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
14467subidd 10232 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
145144oveq2d 6543 . . . 4 (𝜑 → (𝑁 + (𝑀𝑀)) = (𝑁 + 0))
146108addid1d 10088 . . . 4 (𝜑 → (𝑁 + 0) = 𝑁)
147145, 146eqtrd 2643 . . 3 (𝜑 → (𝑁 + (𝑀𝑀)) = 𝑁)
148147oveq1d 6542 . 2 (𝜑 → ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
149143, 148eqtrd 2643 1 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  wss 3539  {cpr 4126  dom cdm 5028  wf 5786  cfv 5790  (class class class)co 6527  𝑚 cmap 7722  pm cpm 7723  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796  cmin 10118  0cn0 11142  cuz 11522  ...cfz 12155  ..^cfzo 12292   D cdv 23378   D𝑛 cdvn 23379   Tayl ctayl 23856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-fac 12881  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-grp 17197  df-minusg 17198  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-abl 17968  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-tsms 21688  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-dvn 23383  df-tayl 23858
This theorem is referenced by:  dvntaylp0  23875  taylthlem1  23876
  Copyright terms: Public domain W3C validator