MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Visualization version   GIF version

Theorem dvntaylp 24961
Description: The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp.a (𝜑𝐴𝑆)
dvntaylp.m (𝜑𝑀 ∈ ℕ0)
dvntaylp.n (𝜑𝑁 ∈ ℕ0)
dvntaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
Assertion
Ref Expression
dvntaylp (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))

Proof of Theorem dvntaylp
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
2 nn0uz 12283 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2925 . . . 4 (𝜑𝑀 ∈ (ℤ‘0))
4 eluzfz2b 12919 . . . 4 (𝑀 ∈ (ℤ‘0) ↔ 𝑀 ∈ (0...𝑀))
53, 4sylib 220 . . 3 (𝜑𝑀 ∈ (0...𝑀))
6 fveq2 6672 . . . . . 6 (𝑚 = 0 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0))
7 fveq2 6672 . . . . . . . 8 (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0))
87oveq2d 7174 . . . . . . 7 (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)))
9 oveq2 7166 . . . . . . . 8 (𝑚 = 0 → (𝑀𝑚) = (𝑀 − 0))
109oveq2d 7174 . . . . . . 7 (𝑚 = 0 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − 0)))
11 eqidd 2824 . . . . . . 7 (𝑚 = 0 → 𝐵 = 𝐵)
128, 10, 11oveq123d 7179 . . . . . 6 (𝑚 = 0 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
136, 12eqeq12d 2839 . . . . 5 (𝑚 = 0 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
1413imbi2d 343 . . . 4 (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))))
15 fveq2 6672 . . . . . 6 (𝑚 = 𝑛 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))
16 fveq2 6672 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛))
1716oveq2d 7174 . . . . . . 7 (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛)))
18 oveq2 7166 . . . . . . . 8 (𝑚 = 𝑛 → (𝑀𝑚) = (𝑀𝑛))
1918oveq2d 7174 . . . . . . 7 (𝑚 = 𝑛 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑛)))
20 eqidd 2824 . . . . . . 7 (𝑚 = 𝑛𝐵 = 𝐵)
2117, 19, 20oveq123d 7179 . . . . . 6 (𝑚 = 𝑛 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
2215, 21eqeq12d 2839 . . . . 5 (𝑚 = 𝑛 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
2322imbi2d 343 . . . 4 (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
24 fveq2 6672 . . . . . 6 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)))
25 fveq2 6672 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))
2625oveq2d 7174 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
27 oveq2 7166 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑀𝑚) = (𝑀 − (𝑛 + 1)))
2827oveq2d 7174 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1))))
29 eqidd 2824 . . . . . . 7 (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵)
3026, 28, 29oveq123d 7179 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
3124, 30eqeq12d 2839 . . . . 5 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
3231imbi2d 343 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
33 fveq2 6672 . . . . . 6 (𝑚 = 𝑀 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀))
34 fveq2 6672 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀))
3534oveq2d 7174 . . . . . . 7 (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀)))
36 oveq2 7166 . . . . . . . 8 (𝑚 = 𝑀 → (𝑀𝑚) = (𝑀𝑀))
3736oveq2d 7174 . . . . . . 7 (𝑚 = 𝑀 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑀)))
38 eqidd 2824 . . . . . . 7 (𝑚 = 𝑀𝐵 = 𝐵)
3935, 37, 38oveq123d 7179 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
4033, 39eqeq12d 2839 . . . . 5 (𝑚 = 𝑀 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
4140imbi2d 343 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))))
42 ssidd 3992 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
43 mapsspm 8442 . . . . . . . 8 (ℂ ↑m ℂ) ⊆ (ℂ ↑pm ℂ)
44 dvntaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
45 dvntaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
46 dvntaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
47 dvntaylp.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4847, 1nn0addcld 11962 . . . . . . . . . 10 (𝜑 → (𝑁 + 𝑀) ∈ ℕ0)
49 dvntaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
50 eqid 2823 . . . . . . . . . 10 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)
5144, 45, 46, 48, 49, 50taylpf 24956 . . . . . . . . 9 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
52 cnex 10620 . . . . . . . . . 10 ℂ ∈ V
5352, 52elmap 8437 . . . . . . . . 9 (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
5451, 53sylibr 236 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑m ℂ))
5543, 54sseldi 3967 . . . . . . 7 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
56 dvn0 24523 . . . . . . 7 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
5742, 55, 56syl2anc 586 . . . . . 6 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
58 recnprss 24504 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
5944, 58syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6052a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
61 elpm2r 8426 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6260, 44, 45, 46, 61syl22anc 836 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
63 dvn0 24523 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6459, 62, 63syl2anc 586 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6564oveq2d 7174 . . . . . . 7 (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹))
661nn0cnd 11960 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
6766subid1d 10988 . . . . . . . 8 (𝜑 → (𝑀 − 0) = 𝑀)
6867oveq2d 7174 . . . . . . 7 (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀))
69 eqidd 2824 . . . . . . 7 (𝜑𝐵 = 𝐵)
7065, 68, 69oveq123d 7179 . . . . . 6 (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
7157, 70eqtr4d 2861 . . . . 5 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
7271a1i 11 . . . 4 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
73 oveq2 7166 . . . . . . 7 (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
74 ssidd 3992 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
7555adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
76 elfzouz 13045 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (ℤ‘0))
7776adantl 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (ℤ‘0))
7877, 2eleqtrrdi 2926 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0)
79 dvnp1 24524 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8074, 75, 78, 79syl3anc 1367 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8144adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
8262adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
83 dvnf 24526 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
8481, 82, 78, 83syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
85 dvnbss 24527 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8681, 82, 78, 85syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8745fdmd 6525 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐴)
8887adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴)
8986, 88sseqtrd 4009 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
9046adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐴𝑆)
9189, 90sstrd 3979 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆)
9247adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℕ0)
93 fzofzp1 13137 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀))
9493adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀))
95 fznn0sub 12942 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9694, 95syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9792, 96nn0addcld 11962 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈ ℕ0)
9849adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
99 elfzofz 13056 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀))
10099adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀))
101 fznn0sub 12942 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑀) → (𝑀𝑛) ∈ ℕ0)
102100, 101syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℕ0)
10392, 102nn0addcld 11962 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀𝑛)) ∈ ℕ0)
104 dvnadd 24528 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑛 ∈ ℕ0 ∧ (𝑁 + (𝑀𝑛)) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10581, 82, 78, 103, 104syl22anc 836 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10647nn0cnd 11960 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
107106adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ)
10896nn0cnd 11960 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ)
109 1cnd 10638 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ)
110107, 108, 109addassd 10665 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)))
11166adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ)
11278nn0cnd 11960 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ)
113111, 112, 109nppcan2d 11025 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀𝑛))
114113oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀𝑛)))
115110, 114eqtrd 2858 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀𝑛)))
116115fveq2d 6676 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))))
117112, 111pncan3d 11002 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀𝑛)) = 𝑀)
118117oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑁 + 𝑀))
119111, 112subcld 10999 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℂ)
120107, 112, 119add12d 10868 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑛 + (𝑁 + (𝑀𝑛))))
121118, 120eqtr3d 2860 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀𝑛))))
122121fveq2d 6676 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
123105, 116, 1223eqtr4d 2868 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
124123dmeqd 5776 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
12598, 124eleqtrrd 2918 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)))
12681, 84, 91, 97, 125dvtaylp 24960 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵))
127115oveq1d 7173 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
128127oveq2d 7174 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
12959adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
130 dvnp1 24524 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
131129, 82, 78, 130syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
132131oveq2d 7174 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))))
133132eqcomd 2829 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
134133oveqd 7175 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
135126, 128, 1343eqtr3rd 2867 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13680, 135eqeq12d 2839 . . . . . . 7 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
13773, 136syl5ibr 248 . . . . . 6 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
138137expcom 416 . . . . 5 (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
139138a2d 29 . . . 4 (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
14014, 23, 32, 41, 72, 139fzind2 13158 . . 3 (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
1415, 140mpcom 38 . 2 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
14266subidd 10987 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
143142oveq2d 7174 . . . 4 (𝜑 → (𝑁 + (𝑀𝑀)) = (𝑁 + 0))
144106addid1d 10842 . . . 4 (𝜑 → (𝑁 + 0) = 𝑁)
145143, 144eqtrd 2858 . . 3 (𝜑 → (𝑁 + (𝑀𝑀)) = 𝑁)
146145oveq1d 7173 . 2 (𝜑 → ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
147141, 146eqtrd 2858 1 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  {cpr 4571  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  pm cpm 8409  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  0cn0 11900  cuz 12246  ...cfz 12895  ..^cfzo 13036   D cdv 24463   D𝑛 cdvn 24464   Tayl ctayl 24943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tsms 22737  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-dvn 24468  df-tayl 24945
This theorem is referenced by:  dvntaylp0  24962  taylthlem1  24963
  Copyright terms: Public domain W3C validator