MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp0 Structured version   Visualization version   GIF version

Theorem dvntaylp0 24171
Description: The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp0.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp0.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp0.a (𝜑𝐴𝑆)
dvntaylp0.m (𝜑𝑀 ∈ (0...𝑁))
dvntaylp0.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
dvntaylp0.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
dvntaylp0 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))

Proof of Theorem dvntaylp0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvntaylp0.m . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑁))
2 elfz3nn0 12472 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
43nn0cnd 11391 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
5 elfznn0 12471 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
61, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
76nn0cnd 11391 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
84, 7npcand 10434 . . . . . . . 8 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
98oveq1d 6705 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = (𝑁(𝑆 Tayl 𝐹)𝐵))
10 dvntaylp0.t . . . . . . 7 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
119, 10syl6eqr 2703 . . . . . 6 (𝜑 → (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵) = 𝑇)
1211oveq2d 6706 . . . . 5 (𝜑 → (ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D𝑛 𝑇))
1312fveq1d 6231 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((ℂ D𝑛 𝑇)‘𝑀))
14 dvntaylp0.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
15 dvntaylp0.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
16 dvntaylp0.a . . . . 5 (𝜑𝐴𝑆)
17 fznn0sub 12411 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
181, 17syl 17 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
19 dvntaylp0.b . . . . . 6 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁))
208fveq2d 6233 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2120dmeqd 5358 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
2219, 21eleqtrrd 2733 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘((𝑁𝑀) + 𝑀)))
2314, 15, 16, 6, 18, 22dvntaylp 24170 . . . 4 (𝜑 → ((ℂ D𝑛 (((𝑁𝑀) + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2413, 23eqtr3d 2687 . . 3 (𝜑 → ((ℂ D𝑛 𝑇)‘𝑀) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
2524fveq1d 6231 . 2 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵))
26 cnex 10055 . . . . . . 7 ℂ ∈ V
2726a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
28 elpm2r 7917 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2927, 14, 15, 16, 28syl22anc 1367 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
30 dvnf 23735 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
3114, 29, 6, 30syl3anc 1366 . . . 4 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
32 dvnbss 23736 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
3314, 29, 6, 32syl3anc 1366 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
34 fdm 6089 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
3515, 34syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
3633, 35sseqtrd 3674 . . . . 5 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝐴)
3736, 16sstrd 3646 . . . 4 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
3818orcd 406 . . . 4 (𝜑 → ((𝑁𝑀) ∈ ℕ0 ∨ (𝑁𝑀) = +∞))
39 dvnadd 23737 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
4014, 29, 6, 18, 39syl22anc 1367 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
417, 4pncan3d 10433 . . . . . . . . 9 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
4241fveq2d 6233 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
4340, 42eqtrd 2685 . . . . . . 7 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
4443dmeqd 5358 . . . . . 6 (𝜑 → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
4519, 44eleqtrrd 2733 . . . . 5 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)))
4614, 31, 37, 18, 45taylplem1 24162 . . . 4 ((𝜑𝑘 ∈ ((0[,](𝑁𝑀)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
47 eqid 2651 . . . 4 ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)
4814, 31, 37, 38, 46, 47tayl0 24161 . . 3 (𝜑 → (𝐵 ∈ dom ((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) ∧ (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)))
4948simprd 478 . 2 (𝜑 → (((𝑁𝑀)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
5025, 49eqtrd 2685 1 (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  {cpr 4212  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  pm cpm 7900  cc 9972  cr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  cmin 10304  0cn0 11330  ...cfz 12364   D𝑛 cdvn 23673   Tayl ctayl 24152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tsms 21977  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-dvn 23677  df-tayl 24154
This theorem is referenced by:  taylthlem1  24172  taylthlem2  24173
  Copyright terms: Public domain W3C validator