Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvnxpaek Structured version   Visualization version   GIF version

Theorem dvnxpaek 38656
Description: The 𝑛-th derivative of the polynomial (x+A)^K. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvnxpaek.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvnxpaek.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvnxpaek.a (𝜑𝐴 ∈ ℂ)
dvnxpaek.k (𝜑𝐾 ∈ ℕ0)
dvnxpaek.f 𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))
Assertion
Ref Expression
dvnxpaek ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dvnxpaek
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6088 . . 3 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘0))
2 breq2 4581 . . . . 5 (𝑛 = 0 → (𝐾 < 𝑛𝐾 < 0))
3 eqidd 2610 . . . . 5 (𝑛 = 0 → 0 = 0)
4 oveq2 6535 . . . . . . . 8 (𝑛 = 0 → (𝐾𝑛) = (𝐾 − 0))
54fveq2d 6092 . . . . . . 7 (𝑛 = 0 → (!‘(𝐾𝑛)) = (!‘(𝐾 − 0)))
65oveq2d 6543 . . . . . 6 (𝑛 = 0 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾 − 0))))
74oveq2d 6543 . . . . . 6 (𝑛 = 0 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾 − 0)))
86, 7oveq12d 6545 . . . . 5 (𝑛 = 0 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
92, 3, 8ifbieq12d 4062 . . . 4 (𝑛 = 0 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))
109mpteq2dv 4667 . . 3 (𝑛 = 0 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
111, 10eqeq12d 2624 . 2 (𝑛 = 0 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘0) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))))
12 fveq2 6088 . . 3 (𝑛 = 𝑚 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘𝑚))
13 breq2 4581 . . . . 5 (𝑛 = 𝑚 → (𝐾 < 𝑛𝐾 < 𝑚))
14 eqidd 2610 . . . . 5 (𝑛 = 𝑚 → 0 = 0)
15 oveq2 6535 . . . . . . . 8 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
1615fveq2d 6092 . . . . . . 7 (𝑛 = 𝑚 → (!‘(𝐾𝑛)) = (!‘(𝐾𝑚)))
1716oveq2d 6543 . . . . . 6 (𝑛 = 𝑚 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾𝑚))))
1815oveq2d 6543 . . . . . 6 (𝑛 = 𝑚 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾𝑚)))
1917, 18oveq12d 6545 . . . . 5 (𝑛 = 𝑚 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
2013, 14, 19ifbieq12d 4062 . . . 4 (𝑛 = 𝑚 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
2120mpteq2dv 4667 . . 3 (𝑛 = 𝑚 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
2212, 21eqeq12d 2624 . 2 (𝑛 = 𝑚 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
23 fveq2 6088 . . 3 (𝑛 = (𝑚 + 1) → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)))
24 breq2 4581 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐾 < 𝑛𝐾 < (𝑚 + 1)))
25 eqidd 2610 . . . . 5 (𝑛 = (𝑚 + 1) → 0 = 0)
26 oveq2 6535 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝐾𝑛) = (𝐾 − (𝑚 + 1)))
2726fveq2d 6092 . . . . . . 7 (𝑛 = (𝑚 + 1) → (!‘(𝐾𝑛)) = (!‘(𝐾 − (𝑚 + 1))))
2827oveq2d 6543 . . . . . 6 (𝑛 = (𝑚 + 1) → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
2926oveq2d 6543 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
3028, 29oveq12d 6545 . . . . 5 (𝑛 = (𝑚 + 1) → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
3124, 25, 30ifbieq12d 4062 . . . 4 (𝑛 = (𝑚 + 1) → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
3231mpteq2dv 4667 . . 3 (𝑛 = (𝑚 + 1) → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
3323, 32eqeq12d 2624 . 2 (𝑛 = (𝑚 + 1) → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))))
34 fveq2 6088 . . 3 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘𝑛) = ((𝑆 D𝑛 𝐹)‘𝑁))
35 breq2 4581 . . . . 5 (𝑛 = 𝑁 → (𝐾 < 𝑛𝐾 < 𝑁))
36 eqidd 2610 . . . . 5 (𝑛 = 𝑁 → 0 = 0)
37 oveq2 6535 . . . . . . . 8 (𝑛 = 𝑁 → (𝐾𝑛) = (𝐾𝑁))
3837fveq2d 6092 . . . . . . 7 (𝑛 = 𝑁 → (!‘(𝐾𝑛)) = (!‘(𝐾𝑁)))
3938oveq2d 6543 . . . . . 6 (𝑛 = 𝑁 → ((!‘𝐾) / (!‘(𝐾𝑛))) = ((!‘𝐾) / (!‘(𝐾𝑁))))
4037oveq2d 6543 . . . . . 6 (𝑛 = 𝑁 → ((𝑥 + 𝐴)↑(𝐾𝑛)) = ((𝑥 + 𝐴)↑(𝐾𝑁)))
4139, 40oveq12d 6545 . . . . 5 (𝑛 = 𝑁 → (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))) = (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))
4235, 36, 41ifbieq12d 4062 . . . 4 (𝑛 = 𝑁 → if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛)))) = if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁)))))
4342mpteq2dv 4667 . . 3 (𝑛 = 𝑁 → (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
4434, 43eqeq12d 2624 . 2 (𝑛 = 𝑁 → (((𝑆 D𝑛 𝐹)‘𝑛) = (𝑥𝑋 ↦ if(𝐾 < 𝑛, 0, (((!‘𝐾) / (!‘(𝐾𝑛))) · ((𝑥 + 𝐴)↑(𝐾𝑛))))) ↔ ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁)))))))
45 dvnxpaek.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
46 recnprss 23419 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4745, 46syl 17 . . . 4 (𝜑𝑆 ⊆ ℂ)
48 cnex 9874 . . . . . 6 ℂ ∈ V
4948a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
50 dvnxpaek.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
51 restsspw 15864 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t 𝑆) ⊆ 𝒫 𝑆
52 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
5351, 52sseldi 3565 . . . . . . . . . . . . 13 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋 ∈ 𝒫 𝑆)
54 elpwi 4116 . . . . . . . . . . . . 13 (𝑋 ∈ 𝒫 𝑆𝑋𝑆)
5553, 54syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → 𝑋𝑆)
5650, 55syl 17 . . . . . . . . . . 11 (𝜑𝑋𝑆)
5756, 47sstrd 3577 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
5857adantr 479 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑋 ⊆ ℂ)
59 simpr 475 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
6058, 59sseldd 3568 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
61 dvnxpaek.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
6261adantr 479 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
6360, 62addcld 9916 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
64 dvnxpaek.k . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
6564adantr 479 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ ℕ0)
6663, 65expcld 12828 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑𝐾) ∈ ℂ)
67 dvnxpaek.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))
6866, 67fmptd 6277 . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
69 elpm2r 7739 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝑋⟶ℂ ∧ 𝑋𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
7049, 45, 68, 56, 69syl22anc 1318 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
71 dvn0 23438 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
7247, 70, 71syl2anc 690 . . 3 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
7367a1i 11 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)))
7464nn0ge0d 11204 . . . . . . . 8 (𝜑 → 0 ≤ 𝐾)
75 0red 9898 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
7664nn0red 11202 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
7775, 76lenltd 10035 . . . . . . . 8 (𝜑 → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
7874, 77mpbid 220 . . . . . . 7 (𝜑 → ¬ 𝐾 < 0)
7978iffalsed 4046 . . . . . 6 (𝜑 → if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
8079adantr 479 . . . . 5 ((𝜑𝑥𝑋) → if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))) = (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))
8164nn0cnd 11203 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
8281subid1d 10233 . . . . . . . . . 10 (𝜑 → (𝐾 − 0) = 𝐾)
8382fveq2d 6092 . . . . . . . . 9 (𝜑 → (!‘(𝐾 − 0)) = (!‘𝐾))
8483oveq2d 6543 . . . . . . . 8 (𝜑 → ((!‘𝐾) / (!‘(𝐾 − 0))) = ((!‘𝐾) / (!‘𝐾)))
85 faccl 12890 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
8664, 85syl 17 . . . . . . . . . 10 (𝜑 → (!‘𝐾) ∈ ℕ)
8786nncnd 10886 . . . . . . . . 9 (𝜑 → (!‘𝐾) ∈ ℂ)
8886nnne0d 10915 . . . . . . . . 9 (𝜑 → (!‘𝐾) ≠ 0)
8987, 88dividd 10651 . . . . . . . 8 (𝜑 → ((!‘𝐾) / (!‘𝐾)) = 1)
9084, 89eqtrd 2643 . . . . . . 7 (𝜑 → ((!‘𝐾) / (!‘(𝐾 − 0))) = 1)
9182oveq2d 6543 . . . . . . 7 (𝜑 → ((𝑥 + 𝐴)↑(𝐾 − 0)) = ((𝑥 + 𝐴)↑𝐾))
9290, 91oveq12d 6545 . . . . . 6 (𝜑 → (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))) = (1 · ((𝑥 + 𝐴)↑𝐾)))
9392adantr 479 . . . . 5 ((𝜑𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))) = (1 · ((𝑥 + 𝐴)↑𝐾)))
9466mulid2d 9915 . . . . 5 ((𝜑𝑥𝑋) → (1 · ((𝑥 + 𝐴)↑𝐾)) = ((𝑥 + 𝐴)↑𝐾))
9580, 93, 943eqtrrd 2648 . . . 4 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑𝐾) = if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0)))))
9695mpteq2dva 4666 . . 3 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
9772, 73, 963eqtrd 2647 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = (𝑥𝑋 ↦ if(𝐾 < 0, 0, (((!‘𝐾) / (!‘(𝐾 − 0))) · ((𝑥 + 𝐴)↑(𝐾 − 0))))))
9847adantr 479 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ⊆ ℂ)
9970adantr 479 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
100 simpr 475 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
101 dvnp1 23439 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
10298, 99, 100, 101syl3anc 1317 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
103102adantr 479 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)))
104 oveq2 6535 . . . 4 (((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
105104adantl 480 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))))
106 iftrue 4041 . . . . . . . . 9 (𝐾 < 𝑚 → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = 0)
107106mpteq2dv 4667 . . . . . . . 8 (𝐾 < 𝑚 → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
108107oveq2d 6543 . . . . . . 7 (𝐾 < 𝑚 → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ 0)))
109108adantl 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ 0)))
110 0cnd 9890 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
11145, 50, 110dvmptconst 38627 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
112111ad2antrr 757 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
11376ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 ∈ ℝ)
114 nn0re 11151 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
115114ad2antlr 758 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝑚 ∈ ℝ)
116 simpr 475 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 < 𝑚)
117113, 115, 116ltled 10037 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾𝑚)
11864nn0zd 11315 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℤ)
119118adantr 479 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝐾 ∈ ℤ)
120100nn0zd 11315 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
121 zleltp1 11264 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝐾𝑚𝐾 < (𝑚 + 1)))
122119, 120, 121syl2anc 690 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝐾𝑚𝐾 < (𝑚 + 1)))
123122adantr 479 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝐾𝑚𝐾 < (𝑚 + 1)))
124117, 123mpbid 220 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → 𝐾 < (𝑚 + 1))
125124iftrued 4043 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = 0)
126125mpteq2dv 4667 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))) = (𝑥𝑋 ↦ 0))
127126eqcomd 2615 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
128109, 112, 1273eqtrd 2647 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
129 simpl 471 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝜑𝑚 ∈ ℕ0))
130 simpr 475 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → ¬ 𝐾 < 𝑚)
131129, 100, 1143syl 18 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝑚 ∈ ℝ)
13276ad2antrr 757 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝐾 ∈ ℝ)
133131, 132lenltd 10035 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝑚𝐾 ↔ ¬ 𝐾 < 𝑚))
134130, 133mpbird 245 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → 𝑚𝐾)
135 simpr 475 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝑚 = 𝐾)
136114ad2antlr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝑚 ∈ ℝ)
13776ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 ∈ ℝ)
138136, 137lttri3d 10029 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑚 = 𝐾 ↔ (¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚)))
139135, 138mpbid 220 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚))
140 simpr 475 . . . . . . . . . . . . 13 ((¬ 𝑚 < 𝐾 ∧ ¬ 𝐾 < 𝑚) → ¬ 𝐾 < 𝑚)
141139, 140syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → ¬ 𝐾 < 𝑚)
142141iffalsed 4046 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
143142mpteq2dv 4667 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
144143oveq2d 6543 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
145 oveq2 6535 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝐾 → (𝐾𝑚) = (𝐾𝐾))
146145fveq2d 6092 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝐾 → (!‘(𝐾𝑚)) = (!‘(𝐾𝐾)))
147146adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝑚)) = (!‘(𝐾𝐾)))
14881subidd 10232 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐾𝐾) = 0)
149148fveq2d 6092 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(𝐾𝐾)) = (!‘0))
150 fac0 12883 . . . . . . . . . . . . . . . . . . . . . 22 (!‘0) = 1
151150a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘0) = 1)
152149, 151eqtrd 2643 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(𝐾𝐾)) = 1)
153152adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝐾)) = 1)
154147, 153eqtrd 2643 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 = 𝐾) → (!‘(𝐾𝑚)) = 1)
155154oveq2d 6543 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) = ((!‘𝐾) / 1))
15687div1d 10645 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((!‘𝐾) / 1) = (!‘𝐾))
157156adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / 1) = (!‘𝐾))
158155, 157eqtrd 2643 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 = 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) = (!‘𝐾))
159158adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) / (!‘(𝐾𝑚))) = (!‘𝐾))
160145adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (𝐾𝑚) = (𝐾𝐾))
161148adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 = 𝐾) → (𝐾𝐾) = 0)
162160, 161eqtrd 2643 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 = 𝐾) → (𝐾𝑚) = 0)
163162oveq2d 6543 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 = 𝐾) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = ((𝑥 + 𝐴)↑0))
164163adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = ((𝑥 + 𝐴)↑0))
16563exp0d 12822 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑0) = 1)
166165adantlr 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑0) = 1)
167164, 166eqtrd 2643 . . . . . . . . . . . . . . 15 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) = 1)
168159, 167oveq12d 6545 . . . . . . . . . . . . . 14 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))) = ((!‘𝐾) · 1))
16987mulid1d 9914 . . . . . . . . . . . . . . 15 (𝜑 → ((!‘𝐾) · 1) = (!‘𝐾))
170169ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) · 1) = (!‘𝐾))
171168, 170eqtrd 2643 . . . . . . . . . . . . 13 (((𝜑𝑚 = 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))) = (!‘𝐾))
172171mpteq2dva 4666 . . . . . . . . . . . 12 ((𝜑𝑚 = 𝐾) → (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (𝑥𝑋 ↦ (!‘𝐾)))
173172oveq2d 6543 . . . . . . . . . . 11 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))))
17445, 50, 87dvmptconst 38627 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))) = (𝑥𝑋 ↦ 0))
175174adantr 479 . . . . . . . . . . 11 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (!‘𝐾))) = (𝑥𝑋 ↦ 0))
176173, 175eqtrd 2643 . . . . . . . . . 10 ((𝜑𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
177176adantlr 746 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
178137ltp1d 10806 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 < (𝐾 + 1))
179 oveq1 6534 . . . . . . . . . . . . . . 15 (𝑚 = 𝐾 → (𝑚 + 1) = (𝐾 + 1))
180179eqcomd 2615 . . . . . . . . . . . . . 14 (𝑚 = 𝐾 → (𝐾 + 1) = (𝑚 + 1))
181180adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝐾 + 1) = (𝑚 + 1))
182178, 181breqtrd 4603 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 𝐾 < (𝑚 + 1))
183182iftrued 4043 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = 0)
184183eqcomd 2615 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → 0 = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
185184mpteq2dv 4667 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
186144, 177, 1853eqtrd 2647 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
187186adantlr 746 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
188 simpll 785 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → (𝜑𝑚 ∈ ℕ0))
189188, 100, 1143syl 18 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚 ∈ ℝ)
19076ad3antrrr 761 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝐾 ∈ ℝ)
191 simplr 787 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚𝐾)
192 neqne 2789 . . . . . . . . . . 11 𝑚 = 𝐾𝑚𝐾)
193192necomd 2836 . . . . . . . . . 10 𝑚 = 𝐾𝐾𝑚)
194193adantl 480 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝐾𝑚)
195189, 190, 191, 194leneltd 10043 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → 𝑚 < 𝐾)
196114ad2antlr 758 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℝ)
19776ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℝ)
198 simpr 475 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 < 𝐾)
199196, 197, 198ltled 10037 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚𝐾)
200196, 197lenltd 10035 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚𝐾 ↔ ¬ 𝐾 < 𝑚))
201199, 200mpbid 220 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ¬ 𝐾 < 𝑚)
202201iffalsed 4046 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))
203202mpteq2dv 4667 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))
204203oveq2d 6543 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))))
20545adantr 479 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑆 ∈ {ℝ, ℂ})
206205adantr 479 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑆 ∈ {ℝ, ℂ})
20787ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘𝐾) ∈ ℂ)
208100adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℕ0)
20964ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℕ0)
210 nn0sub 11193 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑚𝐾 ↔ (𝐾𝑚) ∈ ℕ0))
211208, 209, 210syl2anc 690 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚𝐾 ↔ (𝐾𝑚) ∈ ℕ0))
212199, 211mpbid 220 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℕ0)
213 faccl 12890 . . . . . . . . . . . . . 14 ((𝐾𝑚) ∈ ℕ0 → (!‘(𝐾𝑚)) ∈ ℕ)
214212, 213syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ∈ ℕ)
215214nncnd 10886 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ∈ ℂ)
216214nnne0d 10915 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) ≠ 0)
217207, 215, 216divcld 10653 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘(𝐾𝑚))) ∈ ℂ)
218217adantr 479 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) / (!‘(𝐾𝑚))) ∈ ℂ)
21975ad3antrrr 761 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → 0 ∈ ℝ)
22050adantr 479 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
221220adantr 479 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
222206, 221, 217dvmptconst 38627 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ ((!‘𝐾) / (!‘(𝐾𝑚))))) = (𝑥𝑋 ↦ 0))
22363adantlr 746 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
224223adantlr 746 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
225212adantr 479 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝐾𝑚) ∈ ℕ0)
226224, 225expcld 12828 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾𝑚)) ∈ ℂ)
227225nn0cnd 11203 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (𝐾𝑚) ∈ ℂ)
228212nn0zd 11315 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℤ)
229196, 197posdifd 10466 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 < 𝐾 ↔ 0 < (𝐾𝑚)))
230198, 229mpbid 220 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 0 < (𝐾𝑚))
231228, 230jca 552 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) ∈ ℤ ∧ 0 < (𝐾𝑚)))
232 elnnz 11223 . . . . . . . . . . . . . . 15 ((𝐾𝑚) ∈ ℕ ↔ ((𝐾𝑚) ∈ ℤ ∧ 0 < (𝐾𝑚)))
233231, 232sylibr 222 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℕ)
234 nnm1nn0 11184 . . . . . . . . . . . . . 14 ((𝐾𝑚) ∈ ℕ → ((𝐾𝑚) − 1) ∈ ℕ0)
235233, 234syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) − 1) ∈ ℕ0)
236235adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝐾𝑚) − 1) ∈ ℕ0)
237224, 236expcld 12828 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) ∈ ℂ)
238227, 237mulcld 9917 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) ∈ ℂ)
23961ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐴 ∈ ℂ)
240206, 221, 239, 233dvxpaek 38654 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑(𝐾𝑚)))) = (𝑥𝑋 ↦ ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
241206, 218, 219, 222, 226, 238, 240dvmptmul 23475 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚))))) = (𝑥𝑋 ↦ ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))))
242226mul02d 10086 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) = 0)
243242oveq1d 6542 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = (0 + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))))
244238, 218mulcld 9917 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))) ∈ ℂ)
245244addid2d 10089 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (0 + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))
246120adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝑚 ∈ ℤ)
247119adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → 𝐾 ∈ ℤ)
248 zltp1le 11263 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 < 𝐾 ↔ (𝑚 + 1) ≤ 𝐾))
249246, 247, 248syl2anc 690 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 < 𝐾 ↔ (𝑚 + 1) ≤ 𝐾))
250198, 249mpbid 220 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 + 1) ≤ 𝐾)
251 peano2re 10061 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
252196, 251syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑚 + 1) ∈ ℝ)
253252, 197lenltd 10035 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝑚 + 1) ≤ 𝐾 ↔ ¬ 𝐾 < (𝑚 + 1)))
254250, 253mpbid 220 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ¬ 𝐾 < (𝑚 + 1))
255254adantr 479 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ¬ 𝐾 < (𝑚 + 1))
256255iffalsed 4046 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
257218, 227, 237mulassd 9920 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
258257eqcomd 2615 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))) = ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))))
259233nncnd 10886 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ∈ ℂ)
260207, 215, 259, 216div32d 10676 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · ((𝐾𝑚) / (!‘(𝐾𝑚)))))
261 facnn2 12889 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (!‘(𝐾𝑚)) = ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚)))
262233, 261syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾𝑚)) = ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚)))
263262oveq2d 6543 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / (!‘(𝐾𝑚))) = ((𝐾𝑚) / ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚))))
264 faccl 12890 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾𝑚) − 1) ∈ ℕ0 → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
265234, 264syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾𝑚) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
266265nncnd 10886 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ∈ ℂ)
267233, 266syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ∈ ℂ)
268235, 264syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ∈ ℕ)
269 nnne0 10903 . . . . . . . . . . . . . . . . . . . 20 ((!‘((𝐾𝑚) − 1)) ∈ ℕ → (!‘((𝐾𝑚) − 1)) ≠ 0)
270268, 269syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘((𝐾𝑚) − 1)) ≠ 0)
271 nnne0 10903 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑚) ∈ ℕ → (𝐾𝑚) ≠ 0)
272233, 271syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾𝑚) ≠ 0)
273267, 259, 270, 272divcan8d 38292 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / ((!‘((𝐾𝑚) − 1)) · (𝐾𝑚))) = (1 / (!‘((𝐾𝑚) − 1))))
274263, 273eqtrd 2643 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) / (!‘(𝐾𝑚))) = (1 / (!‘((𝐾𝑚) − 1))))
275274oveq2d 6543 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · ((𝐾𝑚) / (!‘(𝐾𝑚)))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
276 eqidd 2610 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
277260, 275, 2763eqtrd 2647 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
278277adantr 479 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
27981adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝐾 ∈ ℂ)
280100nn0cnd 11203 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
281 1cnd 9913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
282279, 280, 281subsub4d 10275 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → ((𝐾𝑚) − 1) = (𝐾 − (𝑚 + 1)))
283282oveq2d 6543 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
284283ad2antrr 757 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)) = ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))
285278, 284oveq12d 6545 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((((!‘𝐾) / (!‘(𝐾𝑚))) · (𝐾𝑚)) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) = (((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
286282adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((𝐾𝑚) − 1) = (𝐾 − (𝑚 + 1)))
287286eqcomd 2615 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝐾 − (𝑚 + 1)) = ((𝐾𝑚) − 1))
288287fveq2d 6092 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (!‘(𝐾 − (𝑚 + 1))) = (!‘((𝐾𝑚) − 1)))
289288oveq2d 6543 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) = ((!‘𝐾) / (!‘((𝐾𝑚) − 1))))
290207, 267, 270divrecd 10656 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) / (!‘((𝐾𝑚) − 1))) = ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))))
291289, 290eqtr2d 2644 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
292291adantr 479 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) = ((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))))
293292oveq1d 6542 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) · (1 / (!‘((𝐾𝑚) − 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))) = (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))
294258, 285, 2933eqtrrd 2648 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))) = (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))))
295218, 238mulcomd 9918 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1)))) = (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))
296256, 294, 2953eqtrrd 2648 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
297243, 245, 2963eqtrd 2647 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) ∧ 𝑥𝑋) → ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚))))) = if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1))))))
298297mpteq2dva 4666 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑥𝑋 ↦ ((0 · ((𝑥 + 𝐴)↑(𝐾𝑚))) + (((𝐾𝑚) · ((𝑥 + 𝐴)↑((𝐾𝑚) − 1))) · ((!‘𝐾) / (!‘(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
299204, 241, 2983eqtrd 2647 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 < 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
300188, 195, 299syl2anc 690 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) ∧ ¬ 𝑚 = 𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
301187, 300pm2.61dan 827 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚𝐾) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
302129, 134, 301syl2anc 690 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝐾 < 𝑚) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
303128, 302pm2.61dan 827 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
304303adantr 479 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → (𝑆 D (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
305103, 105, 3043eqtrd 2647 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑆 D𝑛 𝐹)‘𝑚) = (𝑥𝑋 ↦ if(𝐾 < 𝑚, 0, (((!‘𝐾) / (!‘(𝐾𝑚))) · ((𝑥 + 𝐴)↑(𝐾𝑚)))))) → ((𝑆 D𝑛 𝐹)‘(𝑚 + 1)) = (𝑥𝑋 ↦ if(𝐾 < (𝑚 + 1), 0, (((!‘𝐾) / (!‘(𝐾 − (𝑚 + 1)))) · ((𝑥 + 𝐴)↑(𝐾 − (𝑚 + 1)))))))
30611, 22, 33, 44, 97, 305nn0indd 11309 1 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾𝑁))) · ((𝑥 + 𝐴)↑(𝐾𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  Vcvv 3172  wss 3539  ifcif 4035  𝒫 cpw 4107  {cpr 4126   class class class wbr 4577  cmpt 4637  wf 5786  cfv 5790  (class class class)co 6527  pm cpm 7723  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  cle 9932  cmin 10118   / cdiv 10536  cn 10870  0cn0 11142  cz 11213  cexp 12680  !cfa 12880  t crest 15853  TopOpenctopn 15854  fldccnfld 19516   D cdv 23378   D𝑛 cdvn 23379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-fac 12881  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-dvn 23383
This theorem is referenced by:  etransclem17  38968
  Copyright terms: Public domain W3C validator