MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Visualization version   GIF version

Theorem dvply1 23756
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dvply1.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
dvply1.a (𝜑𝐴:ℕ0⟶ℂ)
dvply1.b 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
dvply1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dvply1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Distinct variable groups:   𝜑,𝑧,𝑘   𝑧,𝐴,𝑘   𝑧,𝐵   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)

Proof of Theorem dvply1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
21oveq2d 6539 . 2 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
3 eqid 2605 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43cnfldtop 22325 . . . . 5 (TopOpen‘ℂfld) ∈ Top
53cnfldtopon 22324 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
65toponunii 20485 . . . . . 6 ℂ = (TopOpen‘ℂfld)
76restid 15859 . . . . 5 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
84, 7ax-mp 5 . . . 4 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
98eqcomi 2614 . . 3 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
10 cnelprrecn 9881 . . . 4 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
126topopn 20474 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ℂ ∈ (TopOpen‘ℂfld))
134, 12mp1i 13 . . 3 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
14 fzfid 12585 . . 3 (𝜑 → (0...𝑁) ∈ Fin)
15 dvply1.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
16 elfznn0 12253 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
17 ffvelrn 6246 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1815, 16, 17syl2an 492 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1918adantr 479 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
20 simpr 475 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
2116ad2antlr 758 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
2220, 21expcld 12821 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
2319, 22mulcld 9912 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
24233impa 1250 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
25183adant3 1073 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
26 0cnd 9885 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
27 simpl2 1057 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁))
2827, 16syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
2928nn0cnd 11196 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
30 simpl3 1058 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
31 simpr 475 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
32 elnn0 11137 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3328, 32sylib 206 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
34 orel2 396 . . . . . . . . 9 𝑘 = 0 → ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘 ∈ ℕ))
3531, 33, 34sylc 62 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
36 nnm1nn0 11177 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
3830, 37expcld 12821 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
3929, 38mulcld 9912 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
4026, 39ifclda 4065 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
4125, 40mulcld 9912 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
4210a1i 11 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ℂ ∈ {ℝ, ℂ})
43 c0ex 9886 . . . . . 6 0 ∈ V
44 ovex 6551 . . . . . 6 (𝑘 · (𝑧↑(𝑘 − 1))) ∈ V
4543, 44ifex 4101 . . . . 5 if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V
4645a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V)
4716adantl 480 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
48 dvexp2 23436 . . . . 5 (𝑘 ∈ ℕ0 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4947, 48syl 17 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
5042, 22, 46, 49, 18dvmptcmul 23446 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
519, 3, 11, 13, 14, 24, 41, 50dvmptfsum 23455 . 2 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
52 elfznn 12192 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
5352nnne0d 10908 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
5453neneqd 2782 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0)
5554adantl 480 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
5655iffalsed 4042 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
5756oveq2d 6539 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
5857sumeq2dv 14223 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
59 1eluzge0 11560 . . . . . . 7 1 ∈ (ℤ‘0)
60 fzss1 12202 . . . . . . 7 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
6159, 60mp1i 13 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁))
6215adantr 479 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
6352nnnn0d 11194 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
6462, 63, 17syl2an 492 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
6553adantl 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
6665neneqd 2782 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
6766iffalsed 4042 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
6863adantl 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
6968nn0cnd 11196 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
70 simplr 787 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
7152, 36syl 17 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
7271adantl 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
7370, 72expcld 12821 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
7469, 73mulcld 9912 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
7567, 74eqeltrd 2683 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
7664, 75mulcld 9912 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
77 eldifn 3690 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁))
78 0p1e1 10975 . . . . . . . . . . . . . 14 (0 + 1) = 1
7978oveq1i 6533 . . . . . . . . . . . . 13 ((0 + 1)...𝑁) = (1...𝑁)
8079eleq2i 2675 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁))
8177, 80sylnibr 317 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
8281adantl 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
83 eldifi 3689 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁))
8483adantl 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁))
85 dvply1.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
86 nn0uz 11550 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
8785, 86syl6eleq 2693 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘0))
8887ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈ (ℤ‘0))
89 elfzp12 12239 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
9088, 89syl 17 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
9184, 90mpbid 220 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))
92 orel2 396 . . . . . . . . . 10 𝑘 ∈ ((0 + 1)...𝑁) → ((𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)) → 𝑘 = 0))
9382, 91, 92sylc 62 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0)
9493iftrued 4039 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0)
9594oveq2d 6539 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · 0))
9662, 16, 17syl2an 492 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9796mul01d 10082 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · 0) = 0)
9883, 97sylan2 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · 0) = 0)
9995, 98eqtrd 2639 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0)
100 fzfid 12585 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
10161, 76, 99, 100fsumss 14245 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
102 elfznn0 12253 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
103102adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
104103nn0cnd 11196 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
105 ax-1cn 9846 . . . . . . . . . . . . 13 1 ∈ ℂ
106 pncan 10134 . . . . . . . . . . . . 13 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
107104, 105, 106sylancl 692 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗)
108107oveq2d 6539 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧𝑗))
109108oveq2d 6539 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧𝑗)))
110109oveq2d 6539 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
11115ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
112 peano2nn0 11176 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
113102, 112syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ0)
114113adantl 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
115111, 114ffvelrnd 6249 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ)
116114nn0cnd 11196 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ)
117 simplr 787 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ)
118117, 103expcld 12821 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧𝑗) ∈ ℂ)
119115, 116, 118mulassd 9915 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
120115, 116mulcomd 9913 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
121120oveq1d 6538 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
122110, 119, 1213eqtr2d 2645 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
123122sumeq2dv 14223 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
124 1m1e0 10932 . . . . . . . . 9 (1 − 1) = 0
125124oveq1i 6533 . . . . . . . 8 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
126125sumeq1i 14218 . . . . . . 7 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
127 oveq1 6530 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
128127fveq2d 6088 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1)))
129127, 128oveq12d 6541 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
130 oveq2 6531 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑧𝑘) = (𝑧𝑗))
131129, 130oveq12d 6541 . . . . . . . 8 (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
132131cbvsumv 14216 . . . . . . 7 Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗))
133123, 126, 1323eqtr4g 2664 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
134 1zzd 11237 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 1 ∈ ℤ)
13585adantr 479 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
136135nn0zd 11308 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
13764, 74mulcld 9912 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
138 fveq2 6084 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝐴𝑘) = (𝐴‘(𝑗 + 1)))
139 id 22 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
140 oveq1 6530 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1))
141140oveq2d 6539 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1)))
142139, 141oveq12d 6541 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
143138, 142oveq12d 6541 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
144134, 134, 136, 137, 143fsumshftm 14297 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
145 elfznn0 12253 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
146145adantl 480 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
147 ovex 6551 . . . . . . . . 9 ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V
148 dvply1.b . . . . . . . . . 10 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
149148fvmpt2 6181 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
150146, 147, 149sylancl 692 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
151150oveq1d 6538 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵𝑘) · (𝑧𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
152151sumeq2dv 14223 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
153133, 144, 1523eqtr4d 2649 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
15458, 101, 1533eqtr3d 2647 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
155154mpteq2dva 4662 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
156 dvply1.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
157155, 156eqtr4d 2642 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺)
1582, 51, 1573eqtrd 2643 1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  Vcvv 3168  cdif 3532  wss 3535  ifcif 4031  {cpr 4122  cmpt 4633  wf 5782  cfv 5786  (class class class)co 6523  cc 9786  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793  cmin 10113  cn 10863  0cn0 11135  cuz 11515  ...cfz 12148  cexp 12673  Σcsu 14206  t crest 15846  TopOpenctopn 15847  fldccnfld 19509  Topctop 20455   D cdv 23346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-icc 12005  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-limc 23349  df-dv 23350
This theorem is referenced by:  dvply2g  23757
  Copyright terms: Public domain W3C validator