MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Visualization version   GIF version

Theorem dvply1 23977
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dvply1.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
dvply1.a (𝜑𝐴:ℕ0⟶ℂ)
dvply1.b 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
dvply1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dvply1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Distinct variable groups:   𝜑,𝑧,𝑘   𝑧,𝐴,𝑘   𝑧,𝐵   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)

Proof of Theorem dvply1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
21oveq2d 6631 . 2 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
3 eqid 2621 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43cnfldtop 22527 . . . . 5 (TopOpen‘ℂfld) ∈ Top
53cnfldtopon 22526 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
65toponunii 20661 . . . . . 6 ℂ = (TopOpen‘ℂfld)
76restid 16034 . . . . 5 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
84, 7ax-mp 5 . . . 4 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
98eqcomi 2630 . . 3 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
10 cnelprrecn 9989 . . . 4 ℂ ∈ {ℝ, ℂ}
1110a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
126topopn 20651 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ℂ ∈ (TopOpen‘ℂfld))
134, 12mp1i 13 . . 3 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
14 fzfid 12728 . . 3 (𝜑 → (0...𝑁) ∈ Fin)
15 dvply1.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
16 elfznn0 12390 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
17 ffvelrn 6323 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1815, 16, 17syl2an 494 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1918adantr 481 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
20 simpr 477 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
2116ad2antlr 762 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
2220, 21expcld 12964 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
2319, 22mulcld 10020 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
24233impa 1256 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
25183adant3 1079 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
26 0cnd 9993 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
27 simpl2 1063 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁))
2827, 16syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
2928nn0cnd 11313 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
30 simpl3 1064 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
31 simpr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
32 elnn0 11254 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3328, 32sylib 208 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
34 orel2 398 . . . . . . . . 9 𝑘 = 0 → ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘 ∈ ℕ))
3531, 33, 34sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
36 nnm1nn0 11294 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
3735, 36syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
3830, 37expcld 12964 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
3929, 38mulcld 10020 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
4026, 39ifclda 4098 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
4125, 40mulcld 10020 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
4210a1i 11 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ℂ ∈ {ℝ, ℂ})
43 c0ex 9994 . . . . . 6 0 ∈ V
44 ovex 6643 . . . . . 6 (𝑘 · (𝑧↑(𝑘 − 1))) ∈ V
4543, 44ifex 4134 . . . . 5 if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V
4645a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V)
4716adantl 482 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
48 dvexp2 23657 . . . . 5 (𝑘 ∈ ℕ0 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4947, 48syl 17 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
5042, 22, 46, 49, 18dvmptcmul 23667 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
519, 3, 11, 13, 14, 24, 41, 50dvmptfsum 23676 . 2 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
52 elfznn 12328 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
5352nnne0d 11025 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
5453neneqd 2795 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0)
5554adantl 482 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
5655iffalsed 4075 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
5756oveq2d 6631 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
5857sumeq2dv 14383 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
59 1eluzge0 11692 . . . . . . 7 1 ∈ (ℤ‘0)
60 fzss1 12338 . . . . . . 7 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
6159, 60mp1i 13 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁))
6215adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
6352nnnn0d 11311 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
6462, 63, 17syl2an 494 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
6553adantl 482 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
6665neneqd 2795 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
6766iffalsed 4075 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
6863adantl 482 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
6968nn0cnd 11313 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
70 simplr 791 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
7152, 36syl 17 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
7271adantl 482 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
7370, 72expcld 12964 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
7469, 73mulcld 10020 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
7567, 74eqeltrd 2698 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
7664, 75mulcld 10020 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
77 eldifn 3717 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁))
78 0p1e1 11092 . . . . . . . . . . . . . 14 (0 + 1) = 1
7978oveq1i 6625 . . . . . . . . . . . . 13 ((0 + 1)...𝑁) = (1...𝑁)
8079eleq2i 2690 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁))
8177, 80sylnibr 319 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
8281adantl 482 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
83 eldifi 3716 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁))
8483adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁))
85 dvply1.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
86 nn0uz 11682 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
8785, 86syl6eleq 2708 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘0))
8887ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈ (ℤ‘0))
89 elfzp12 12376 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
9088, 89syl 17 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
9184, 90mpbid 222 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))
92 orel2 398 . . . . . . . . . 10 𝑘 ∈ ((0 + 1)...𝑁) → ((𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)) → 𝑘 = 0))
9382, 91, 92sylc 65 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0)
9493iftrued 4072 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0)
9594oveq2d 6631 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · 0))
9662, 16, 17syl2an 494 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9796mul01d 10195 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · 0) = 0)
9883, 97sylan2 491 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · 0) = 0)
9995, 98eqtrd 2655 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0)
100 fzfid 12728 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
10161, 76, 99, 100fsumss 14405 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
102 elfznn0 12390 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
103102adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
104103nn0cnd 11313 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
105 ax-1cn 9954 . . . . . . . . . . . . 13 1 ∈ ℂ
106 pncan 10247 . . . . . . . . . . . . 13 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
107104, 105, 106sylancl 693 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗)
108107oveq2d 6631 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧𝑗))
109108oveq2d 6631 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧𝑗)))
110109oveq2d 6631 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
11115ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
112 peano2nn0 11293 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
113102, 112syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ0)
114113adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
115111, 114ffvelrnd 6326 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ)
116114nn0cnd 11313 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ)
117 simplr 791 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ)
118117, 103expcld 12964 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧𝑗) ∈ ℂ)
119115, 116, 118mulassd 10023 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
120115, 116mulcomd 10021 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
121120oveq1d 6630 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
122110, 119, 1213eqtr2d 2661 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
123122sumeq2dv 14383 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
124 1m1e0 11049 . . . . . . . . 9 (1 − 1) = 0
125124oveq1i 6625 . . . . . . . 8 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
126125sumeq1i 14378 . . . . . . 7 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
127 oveq1 6622 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
128127fveq2d 6162 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1)))
129127, 128oveq12d 6633 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
130 oveq2 6623 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑧𝑘) = (𝑧𝑗))
131129, 130oveq12d 6633 . . . . . . . 8 (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
132131cbvsumv 14376 . . . . . . 7 Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗))
133123, 126, 1323eqtr4g 2680 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
134 1zzd 11368 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 1 ∈ ℤ)
13585adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
136135nn0zd 11440 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
13764, 74mulcld 10020 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
138 fveq2 6158 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝐴𝑘) = (𝐴‘(𝑗 + 1)))
139 id 22 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
140 oveq1 6622 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1))
141140oveq2d 6631 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1)))
142139, 141oveq12d 6633 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
143138, 142oveq12d 6633 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
144134, 134, 136, 137, 143fsumshftm 14460 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
145 elfznn0 12390 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
146145adantl 482 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
147 ovex 6643 . . . . . . . . 9 ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V
148 dvply1.b . . . . . . . . . 10 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
149148fvmpt2 6258 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
150146, 147, 149sylancl 693 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
151150oveq1d 6630 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵𝑘) · (𝑧𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
152151sumeq2dv 14383 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
153133, 144, 1523eqtr4d 2665 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
15458, 101, 1533eqtr3d 2663 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
155154mpteq2dva 4714 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
156 dvply1.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
157155, 156eqtr4d 2658 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺)
1582, 51, 1573eqtrd 2659 1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  Vcvv 3190  cdif 3557  wss 3560  ifcif 4064  {cpr 4157  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  cmin 10226  cn 10980  0cn0 11252  cuz 11647  ...cfz 12284  cexp 12816  Σcsu 14366  t crest 16021  TopOpenctopn 16022  fldccnfld 19686  Topctop 20638   D cdv 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571
This theorem is referenced by:  dvply2g  23978
  Copyright terms: Public domain W3C validator