MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Visualization version   GIF version

Theorem dvply1 24872
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dvply1.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
dvply1.a (𝜑𝐴:ℕ0⟶ℂ)
dvply1.b 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
dvply1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dvply1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Distinct variable groups:   𝜑,𝑧,𝑘   𝑧,𝐴,𝑘   𝑧,𝐵   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)

Proof of Theorem dvply1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
21oveq2d 7171 . 2 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
3 eqid 2821 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43cnfldtopon 23390 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
54toponrestid 21528 . . 3 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
6 cnelprrecn 10629 . . . 4 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
83cnfldtop 23391 . . . 4 (TopOpen‘ℂfld) ∈ Top
9 unicntop 23393 . . . . 5 ℂ = (TopOpen‘ℂfld)
109topopn 21513 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ℂ ∈ (TopOpen‘ℂfld))
118, 10mp1i 13 . . 3 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
12 fzfid 13340 . . 3 (𝜑 → (0...𝑁) ∈ Fin)
13 dvply1.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
14 elfznn0 12999 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
15 ffvelrn 6848 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1613, 14, 15syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1716adantr 483 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
18 simpr 487 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
1914ad2antlr 725 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
2018, 19expcld 13509 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
2117, 20mulcld 10660 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
22213impa 1106 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
23163adant3 1128 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
24 0cnd 10633 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
25 simpl2 1188 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁))
2625, 14syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
2726nn0cnd 11956 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
28 simpl3 1189 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
29 simpr 487 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
30 elnn0 11898 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3126, 30sylib 220 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
32 orel2 887 . . . . . . . . 9 𝑘 = 0 → ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘 ∈ ℕ))
3329, 31, 32sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
34 nnm1nn0 11937 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
3533, 34syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
3628, 35expcld 13509 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
3727, 36mulcld 10660 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
3824, 37ifclda 4500 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
3923, 38mulcld 10660 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
406a1i 11 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ℂ ∈ {ℝ, ℂ})
41 c0ex 10634 . . . . . 6 0 ∈ V
42 ovex 7188 . . . . . 6 (𝑘 · (𝑧↑(𝑘 − 1))) ∈ V
4341, 42ifex 4514 . . . . 5 if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V
4443a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V)
4514adantl 484 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
46 dvexp2 24550 . . . . 5 (𝑘 ∈ ℕ0 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4745, 46syl 17 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4840, 20, 44, 47, 16dvmptcmul 24560 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
495, 3, 7, 11, 12, 22, 39, 48dvmptfsum 24571 . 2 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
50 elfznn 12935 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
5150nnne0d 11686 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
5251neneqd 3021 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0)
5352adantl 484 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
5453iffalsed 4477 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
5554oveq2d 7171 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
5655sumeq2dv 15059 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
57 1eluzge0 12291 . . . . . . 7 1 ∈ (ℤ‘0)
58 fzss1 12945 . . . . . . 7 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
5957, 58mp1i 13 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁))
6013adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
6150nnnn0d 11954 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
6260, 61, 15syl2an 597 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
6351adantl 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
6463neneqd 3021 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
6564iffalsed 4477 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
6661adantl 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
6766nn0cnd 11956 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
68 simplr 767 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
6950, 34syl 17 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
7069adantl 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
7168, 70expcld 13509 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
7267, 71mulcld 10660 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
7365, 72eqeltrd 2913 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
7462, 73mulcld 10660 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
75 eldifn 4103 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁))
76 0p1e1 11758 . . . . . . . . . . . . . 14 (0 + 1) = 1
7776oveq1i 7165 . . . . . . . . . . . . 13 ((0 + 1)...𝑁) = (1...𝑁)
7877eleq2i 2904 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁))
7975, 78sylnibr 331 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
8079adantl 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
81 eldifi 4102 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁))
8281adantl 484 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁))
83 dvply1.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
84 nn0uz 12279 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
8583, 84eleqtrdi 2923 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘0))
8685ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈ (ℤ‘0))
87 elfzp12 12985 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
8886, 87syl 17 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
8982, 88mpbid 234 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))
90 orel2 887 . . . . . . . . . 10 𝑘 ∈ ((0 + 1)...𝑁) → ((𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)) → 𝑘 = 0))
9180, 89, 90sylc 65 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0)
9291iftrued 4474 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0)
9392oveq2d 7171 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · 0))
9460, 14, 15syl2an 597 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9594mul01d 10838 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · 0) = 0)
9681, 95sylan2 594 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · 0) = 0)
9793, 96eqtrd 2856 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0)
98 fzfid 13340 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
9959, 74, 97, 98fsumss 15081 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
100 elfznn0 12999 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
101100adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
102101nn0cnd 11956 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
103 ax-1cn 10594 . . . . . . . . . . . . 13 1 ∈ ℂ
104 pncan 10891 . . . . . . . . . . . . 13 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
105102, 103, 104sylancl 588 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗)
106105oveq2d 7171 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧𝑗))
107106oveq2d 7171 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧𝑗)))
108107oveq2d 7171 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
10913ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
110 peano2nn0 11936 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
111100, 110syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ0)
112111adantl 484 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
113109, 112ffvelrnd 6851 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ)
114112nn0cnd 11956 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ)
115 simplr 767 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ)
116115, 101expcld 13509 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧𝑗) ∈ ℂ)
117113, 114, 116mulassd 10663 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
118113, 114mulcomd 10661 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
119118oveq1d 7170 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
120108, 117, 1193eqtr2d 2862 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
121120sumeq2dv 15059 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
122 1m1e0 11708 . . . . . . . . 9 (1 − 1) = 0
123122oveq1i 7165 . . . . . . . 8 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
124123sumeq1i 15054 . . . . . . 7 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
125 oveq1 7162 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
126 fvoveq1 7178 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1)))
127125, 126oveq12d 7173 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
128 oveq2 7163 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑧𝑘) = (𝑧𝑗))
129127, 128oveq12d 7173 . . . . . . . 8 (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
130129cbvsumv 15052 . . . . . . 7 Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗))
131121, 124, 1303eqtr4g 2881 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
132 1zzd 12012 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 1 ∈ ℤ)
13383adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
134133nn0zd 12084 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
13562, 72mulcld 10660 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
136 fveq2 6669 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝐴𝑘) = (𝐴‘(𝑗 + 1)))
137 id 22 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
138 oveq1 7162 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1))
139138oveq2d 7171 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1)))
140137, 139oveq12d 7173 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
141136, 140oveq12d 7173 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
142132, 132, 134, 135, 141fsumshftm 15135 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
143 elfznn0 12999 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
144143adantl 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
145 ovex 7188 . . . . . . . . 9 ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V
146 dvply1.b . . . . . . . . . 10 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
147146fvmpt2 6778 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
148144, 145, 147sylancl 588 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
149148oveq1d 7170 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵𝑘) · (𝑧𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
150149sumeq2dv 15059 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
151131, 142, 1503eqtr4d 2866 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
15256, 99, 1513eqtr3d 2864 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
153152mpteq2dva 5160 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
154 dvply1.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
155153, 154eqtr4d 2859 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺)
1562, 49, 1553eqtrd 2860 1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  wss 3935  ifcif 4466  {cpr 4568  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869  cn 11637  0cn0 11896  cuz 12242  ...cfz 12891  cexp 13428  Σcsu 15041  TopOpenctopn 16694  fldccnfld 20544  Topctop 21500   D cdv 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464
This theorem is referenced by:  dvply2g  24873
  Copyright terms: Public domain W3C validator