Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Structured version   Visualization version   GIF version

 Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv.h 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
dvradcnv.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟   𝑛,𝑟,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11760 . 2 0 = (ℤ‘0)
2 1nn0 11346 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 ax-1cn 10032 . . . . 5 1 ∈ ℂ
5 nn0cn 11340 . . . . . 6 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7 nn0ex 11336 . . . . . . 7 0 ∈ V
87mptex 6527 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) ∈ V
98shftval4 13861 . . . . 5 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
104, 6, 9sylancr 696 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
11 addcom 10260 . . . . . 6 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + 𝑘) = (𝑘 + 1))
124, 6, 11sylancr 696 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 + 𝑘) = (𝑘 + 1))
1312fveq2d 6233 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)))
14 peano2nn0 11371 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
1514adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
16 id 22 . . . . . . . 8 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
17 fveq2 6229 . . . . . . . . 9 (𝑖 = (𝑘 + 1) → ((𝐺𝑋)‘𝑖) = ((𝐺𝑋)‘(𝑘 + 1)))
1817fveq2d 6233 . . . . . . . 8 (𝑖 = (𝑘 + 1) → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘(𝑘 + 1))))
1916, 18oveq12d 6708 . . . . . . 7 (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
20 eqid 2651 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))
21 ovex 6718 . . . . . . 7 ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) ∈ V
2219, 20, 21fvmpt 6321 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
2315, 22syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
24 dvradcnv.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
25 dvradcnv.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2625pserval2 24210 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2724, 14, 26syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2827fveq2d 6233 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
2928oveq2d 6706 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3023, 29eqtrd 2685 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3110, 13, 303eqtrd 2689 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3215nn0red 11390 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
33 dvradcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
34 ffvelrn 6397 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3533, 14, 34syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
36 expcl 12918 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3724, 14, 36syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3835, 37mulcld 10098 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
3938abscld 14219 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
4032, 39remulcld 10108 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ)
4131, 40eqeltrd 2730 . 2 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ)
42 oveq1 6697 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
4342fveq2d 6233 . . . . . . 7 (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1)))
4442, 43oveq12d 6708 . . . . . 6 (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
45 oveq2 6698 . . . . . 6 (𝑛 = 𝑘 → (𝑋𝑛) = (𝑋𝑘))
4644, 45oveq12d 6708 . . . . 5 (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
47 dvradcnv.h . . . . 5 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
48 ovex 6718 . . . . 5 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ V
4946, 47, 48fvmpt 6321 . . . 4 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5049adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5115nn0cnd 11391 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
5251, 35mulcld 10098 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
53 expcl 12918 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5424, 53sylan 487 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5552, 54mulcld 10098 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ ℂ)
5650, 55eqeltrd 2730 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
57 dvradcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
58 dvradcnv.l . . . . . . . 8 (𝜑 → (abs‘𝑋) < 𝑅)
59 id 22 . . . . . . . . . 10 (𝑖 = 𝑘𝑖 = 𝑘)
60 fveq2 6229 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐺𝑋)‘𝑖) = ((𝐺𝑋)‘𝑘))
6160fveq2d 6233 . . . . . . . . . 10 (𝑖 = 𝑘 → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘𝑘)))
6259, 61oveq12d 6708 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6362cbvmptv 4783 . . . . . . . 8 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6425, 33, 57, 24, 58, 63radcnvlt1 24217 . . . . . . 7 (𝜑 → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
6564simpld 474 . . . . . 6 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ )
66 climdm 14329 . . . . . 6 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
6765, 66sylib 208 . . . . 5 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
68 0z 11426 . . . . . 6 0 ∈ ℤ
69 neg1z 11451 . . . . . 6 -1 ∈ ℤ
708isershft 14438 . . . . . 6 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))))))
7168, 69, 70mp2an 708 . . . . 5 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
7267, 71sylib 208 . . . 4 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
73 seqex 12843 . . . . 5 seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ V
74 fvex 6239 . . . . 5 ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ∈ V
7573, 74breldm 5361 . . . 4 (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
7672, 75syl 17 . . 3 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
77 eqid 2651 . . . 4 (ℤ‘(0 + -1)) = (ℤ‘(0 + -1))
78 neg1cn 11162 . . . . . . . 8 -1 ∈ ℂ
7978addid2i 10262 . . . . . . 7 (0 + -1) = -1
80 0le1 10589 . . . . . . . 8 0 ≤ 1
81 1re 10077 . . . . . . . . 9 1 ∈ ℝ
82 le0neg2 10575 . . . . . . . . 9 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
8381, 82ax-mp 5 . . . . . . . 8 (0 ≤ 1 ↔ -1 ≤ 0)
8480, 83mpbi 220 . . . . . . 7 -1 ≤ 0
8579, 84eqbrtri 4706 . . . . . 6 (0 + -1) ≤ 0
8679, 69eqeltri 2726 . . . . . . 7 (0 + -1) ∈ ℤ
8786eluz1i 11733 . . . . . 6 (0 ∈ (ℤ‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1) ≤ 0))
8868, 85, 87mpbir2an 975 . . . . 5 0 ∈ (ℤ‘(0 + -1))
8988a1i 11 . . . 4 (𝜑 → 0 ∈ (ℤ‘(0 + -1)))
90 eluzelcn 11737 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → 𝑘 ∈ ℂ)
9190adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → 𝑘 ∈ ℂ)
924, 91, 9sylancr 696 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
93 nn0re 11339 . . . . . . . . . 10 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
9493adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
9525, 33, 24psergf 24211 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
9695ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝐺𝑋)‘𝑖) ∈ ℂ)
9796abscld 14219 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑖)) ∈ ℝ)
9894, 97remulcld 10108 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℝ)
9998recnd 10106 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℂ)
10099, 20fmptd 6425 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ)
1014, 90, 11sylancr 696 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1))
102 eluzp1p1 11751 . . . . . . . 8 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ (ℤ‘((0 + -1) + 1)))
10379oveq1i 6700 . . . . . . . . . . 11 ((0 + -1) + 1) = (-1 + 1)
104 1pneg1e0 11167 . . . . . . . . . . . 12 (1 + -1) = 0
1054, 78, 104addcomli 10266 . . . . . . . . . . 11 (-1 + 1) = 0
106103, 105eqtri 2673 . . . . . . . . . 10 ((0 + -1) + 1) = 0
107106fveq2i 6232 . . . . . . . . 9 (ℤ‘((0 + -1) + 1)) = (ℤ‘0)
1081, 107eqtr4i 2676 . . . . . . . 8 0 = (ℤ‘((0 + -1) + 1))
109102, 108syl6eleqr 2741 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ ℕ0)
110101, 109eqeltrd 2730 . . . . . 6 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) ∈ ℕ0)
111 ffvelrn 6397 . . . . . 6 (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ ∧ (1 + 𝑘) ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
112100, 110, 111syl2an 493 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11392, 112eqeltrd 2730 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ)
11477, 89, 113iserex 14431 . . 3 (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔ seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ))
11576, 114mpbid 222 . 2 (𝜑 → seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
116 1red 10093 . . 3 ((𝜑𝑋 = 0) → 1 ∈ ℝ)
117 df-ne 2824 . . . . . 6 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
118117biimpri 218 . . . . 5 𝑋 = 0 → 𝑋 ≠ 0)
119 absrpcl 14072 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
12024, 118, 119syl2an 493 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈ ℝ+)
121120rprecred 11921 . . 3 ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈ ℝ)
122116, 121ifclda 4153 . 2 (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ)
123 oveq1 6697 . . . . 5 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
124123breq2d 4697 . . . 4 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
125 oveq1 6697 . . . . 5 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
126125breq2d 4697 . . . 4 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
127 elnnuz 11762 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
128 nnnn0 11337 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
129127, 128sylbir 225 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
13015nn0ge0d 11392 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝑘 + 1))
13138absge0d 14227 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
13232, 39, 130, 131mulge0d 10642 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
133129, 132sylan2 490 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
134133adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
135 oveq1 6697 . . . . . . . . 9 (𝑋 = 0 → (𝑋𝑘) = (0↑𝑘))
136 simpr 476 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
137136, 127sylibr 224 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
1381370expd 13064 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘1)) → (0↑𝑘) = 0)
139135, 138sylan9eqr 2707 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (𝑋𝑘) = 0)
140139oveq2d 6706 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0))
14152mul01d 10273 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
142129, 141sylan2 490 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
143142adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
144140, 143eqtrd 2685 . . . . . 6 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = 0)
145144abs00bd 14075 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = 0)
14640recnd 10106 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ)
147146mulid2d 10096 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
148129, 147sylan2 490 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
149148adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
150134, 145, 1493brtr4d 4717 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
15155abscld 14219 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ)
15251, 35, 54mulassd 10101 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
153152fveq2d 6233 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15435, 54mulcld 10098 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) ∈ ℂ)
15551, 154absmuld 14237 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15632, 130absidd 14205 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝑘 + 1)) = (𝑘 + 1))
157156oveq1d 6705 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
158153, 155, 1573eqtrd 2689 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
159 eqle 10177 . . . . . . . . 9 (((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ ∧ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
160151, 158, 159syl2anc 694 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
161160adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
16224adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℂ)
163119rpreccld 11920 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
164162, 163sylan 487 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
165164rpcnd 11912 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℂ)
16651adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℂ)
16739adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
168167recnd 10106 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ)
169165, 166, 168mul12d 10283 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
17038adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
17124ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ)
172 simpr 476 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
173170, 171, 172absdivd 14238 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)))
17435adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
17537adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
176174, 175, 171, 172divassd 10874 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
1776adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈ ℂ)
178 pncan 10325 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
179177, 4, 178sylancl 695 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘)
180179oveq2d 6706 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋𝑘))
18115nn0zd 11518 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
182181adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℤ)
183171, 172, 182expm1d 13058 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋))
184180, 183eqtr3d 2687 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋))
185184oveq2d 6706 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
186176, 185eqtr4d 2688 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))
187186fveq2d 6233 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
18824abscld 14219 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑋) ∈ ℝ)
189188ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ)
190189recnd 10106 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℂ)
191162, 119sylan 487 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
192191rpne0d 11915 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0)
193168, 190, 192divrec2d 10843 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
194173, 187, 1933eqtr3rd 2694 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
195194oveq2d 6706 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
196169, 195eqtrd 2685 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
197161, 196breqtrrd 4713 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
198129, 197sylanl2 684 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
199117, 198sylan2br 492 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
200124, 126, 150, 199ifbothda 4156 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
20150fveq2d 6233 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
202129, 201sylan2 490 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
20331oveq2d 6706 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
204129, 203sylan2 490 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
205200, 202, 2043brtr4d 4717 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)))
2061, 3, 41, 56, 115, 122, 205cvgcmpce 14594 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  {crab 2945  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304  -cneg 10305   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  seqcseq 12841  ↑cexp 12900   shift cshi 13850  abscabs 14018   ⇝ cli 14259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461 This theorem is referenced by:  pserdvlem2  24227  dvradcnv2  38863
 Copyright terms: Public domain W3C validator