Mathbox for Steve Rodriguez < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsid Structured version   Visualization version   GIF version

Theorem dvsid 38009
 Description: Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Assertion
Ref Expression
dvsid (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1}))

Proof of Theorem dvsid
StepHypRef Expression
1 fnresi 5966 . . . . 5 ( I ↾ ℂ) Fn ℂ
2 rnresi 5438 . . . . . 6 ran ( I ↾ ℂ) = ℂ
32eqimssi 3638 . . . . 5 ran ( I ↾ ℂ) ⊆ ℂ
4 df-f 5851 . . . . 5 (( I ↾ ℂ):ℂ⟶ℂ ↔ (( I ↾ ℂ) Fn ℂ ∧ ran ( I ↾ ℂ) ⊆ ℂ))
51, 3, 4mpbir2an 954 . . . 4 ( I ↾ ℂ):ℂ⟶ℂ
65jctr 564 . . 3 (𝑆 ∈ {ℝ, ℂ} → (𝑆 ∈ {ℝ, ℂ} ∧ ( I ↾ ℂ):ℂ⟶ℂ))
7 recnprss 23574 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
8 dvid 23587 . . . . . . 7 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
98dmeqi 5285 . . . . . 6 dom (ℂ D ( I ↾ ℂ)) = dom (ℂ × {1})
10 1ex 9979 . . . . . . . 8 1 ∈ V
1110fconst 6048 . . . . . . 7 (ℂ × {1}):ℂ⟶{1}
1211fdmi 6009 . . . . . 6 dom (ℂ × {1}) = ℂ
139, 12eqtri 2643 . . . . 5 dom (ℂ D ( I ↾ ℂ)) = ℂ
147, 13syl6sseqr 3631 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ dom (ℂ D ( I ↾ ℂ)))
15 ssid 3603 . . . 4 ℂ ⊆ ℂ
1614, 15jctil 559 . . 3 (𝑆 ∈ {ℝ, ℂ} → (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D ( I ↾ ℂ))))
17 dvres3 23583 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ ( I ↾ ℂ):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D ( I ↾ ℂ)))) → (𝑆 D (( I ↾ ℂ) ↾ 𝑆)) = ((ℂ D ( I ↾ ℂ)) ↾ 𝑆))
186, 16, 17syl2anc 692 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (( I ↾ ℂ) ↾ 𝑆)) = ((ℂ D ( I ↾ ℂ)) ↾ 𝑆))
197resabs1d 5387 . . 3 (𝑆 ∈ {ℝ, ℂ} → (( I ↾ ℂ) ↾ 𝑆) = ( I ↾ 𝑆))
2019oveq2d 6620 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (( I ↾ ℂ) ↾ 𝑆)) = (𝑆 D ( I ↾ 𝑆)))
218reseq1i 5352 . . . 4 ((ℂ D ( I ↾ ℂ)) ↾ 𝑆) = ((ℂ × {1}) ↾ 𝑆)
22 xpssres 5393 . . . 4 (𝑆 ⊆ ℂ → ((ℂ × {1}) ↾ 𝑆) = (𝑆 × {1}))
2321, 22syl5eq 2667 . . 3 (𝑆 ⊆ ℂ → ((ℂ D ( I ↾ ℂ)) ↾ 𝑆) = (𝑆 × {1}))
247, 23syl 17 . 2 (𝑆 ∈ {ℝ, ℂ} → ((ℂ D ( I ↾ ℂ)) ↾ 𝑆) = (𝑆 × {1}))
2518, 20, 243eqtr3d 2663 1 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ⊆ wss 3555  {csn 4148  {cpr 4150   I cid 4984   × cxp 5072  dom cdm 5074  ran crn 5075   ↾ cres 5076   Fn wfn 5842  ⟶wf 5843  (class class class)co 6604  ℂcc 9878  ℝcr 9879  1c1 9881   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536  df-dv 23537 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator