Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinax Structured version   Visualization version   GIF version

Theorem dvsinax 38625
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvsinax (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Distinct variable group:   𝑦,𝐴

Proof of Theorem dvsinax
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sinf 14642 . . . . . 6 sin:ℂ⟶ℂ
21a1i 11 . . . . 5 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
3 mulcl 9877 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
4 eqid 2609 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))
53, 4fmptd 6277 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ)
6 fcompt 6291 . . . . 5 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ) → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
72, 5, 6syl2anc 690 . . . 4 (𝐴 ∈ ℂ → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
8 eqidd 2610 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
9 oveq2 6535 . . . . . . . 8 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
109adantl 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → (𝐴 · 𝑦) = (𝐴 · 𝑤))
11 simpr 475 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ ℂ)
12 mulcl 9877 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 𝑤) ∈ ℂ)
138, 10, 11, 12fvmptd 6182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤) = (𝐴 · 𝑤))
1413fveq2d 6092 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (sin‘(𝐴 · 𝑤)))
1514mpteq2dva 4666 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))))
16 oveq2 6535 . . . . . . 7 (𝑤 = 𝑦 → (𝐴 · 𝑤) = (𝐴 · 𝑦))
1716fveq2d 6092 . . . . . 6 (𝑤 = 𝑦 → (sin‘(𝐴 · 𝑤)) = (sin‘(𝐴 · 𝑦)))
1817cbvmptv 4672 . . . . 5 (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))
1918a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
207, 15, 193eqtrrd 2648 . . 3 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) = (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
2120oveq2d 6543 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
22 cnelprrecn 9886 . . . 4 ℂ ∈ {ℝ, ℂ}
2322a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
24 dvsin 23494 . . . . . 6 (ℂ D sin) = cos
2524dmeqi 5234 . . . . 5 dom (ℂ D sin) = dom cos
26 cosf 14643 . . . . . 6 cos:ℂ⟶ℂ
2726fdmi 5951 . . . . 5 dom cos = ℂ
2825, 27eqtri 2631 . . . 4 dom (ℂ D sin) = ℂ
2928a1i 11 . . 3 (𝐴 ∈ ℂ → dom (ℂ D sin) = ℂ)
30 id 22 . . . . . . . . . . 11 (𝑦 = 𝑤𝑦 = 𝑤)
3130cbvmptv 4672 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑤 ∈ ℂ ↦ 𝑤)
3231oveq2i 6538 . . . . . . . . 9 ((ℂ × {𝐴}) ∘𝑓 · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘𝑓 · (𝑤 ∈ ℂ ↦ 𝑤))
3332a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘𝑓 · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘𝑓 · (𝑤 ∈ ℂ ↦ 𝑤)))
34 cnex 9874 . . . . . . . . . . 11 ℂ ∈ V
3534a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ℂ ∈ V)
36 snex 4830 . . . . . . . . . . 11 {𝐴} ∈ V
3736a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → {𝐴} ∈ V)
38 xpexg 6836 . . . . . . . . . 10 ((ℂ ∈ V ∧ {𝐴} ∈ V) → (ℂ × {𝐴}) ∈ V)
3935, 37, 38syl2anc 690 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ V)
4034mptex 6368 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ 𝑤) ∈ V
4140a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ V)
42 offval3 7031 . . . . . . . . 9 (((ℂ × {𝐴}) ∈ V ∧ (𝑤 ∈ ℂ ↦ 𝑤) ∈ V) → ((ℂ × {𝐴}) ∘𝑓 · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
4339, 41, 42syl2anc 690 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘𝑓 · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
44 fconst6g 5992 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
45 fdm 5950 . . . . . . . . . . . . 13 ((ℂ × {𝐴}):ℂ⟶ℂ → dom (ℂ × {𝐴}) = ℂ)
4644, 45syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (ℂ × {𝐴}) = ℂ)
47 eqid 2609 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤)
48 id 22 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
4947, 48fmpti 6276 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ 𝑤):ℂ⟶ℂ
5049fdmi 5951 . . . . . . . . . . . . 13 dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ
5150a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ)
5246, 51ineq12d 3776 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = (ℂ ∩ ℂ))
53 inidm 3783 . . . . . . . . . . . 12 (ℂ ∩ ℂ) = ℂ
5453a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ ∩ ℂ) = ℂ)
5552, 54eqtrd 2643 . . . . . . . . . 10 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = ℂ)
5655mpteq1d 4660 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
57 fvconst2g 6350 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ × {𝐴})‘𝑦) = 𝐴)
58 eqidd 2610 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤))
59 simpr 475 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
60 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
6158, 59, 60, 60fvmptd 6182 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6261adantl 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6357, 62oveq12d 6545 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦)) = (𝐴 · 𝑦))
6463mpteq2dva 4666 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6556, 64eqtrd 2643 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6633, 43, 653eqtrrd 2648 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ((ℂ × {𝐴}) ∘𝑓 · (𝑦 ∈ ℂ ↦ 𝑦)))
6766oveq2d 6543 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (ℂ D ((ℂ × {𝐴}) ∘𝑓 · (𝑦 ∈ ℂ ↦ 𝑦))))
68 eqid 2609 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑦 ∈ ℂ ↦ 𝑦)
6968, 60fmpti 6276 . . . . . . . 8 (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ
7069a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ)
71 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
7222a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
7372dvmptid 23471 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
7473trud 1483 . . . . . . . . . 10 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)
7574dmeqi 5234 . . . . . . . . 9 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = dom (𝑦 ∈ ℂ ↦ 1)
76 ax-1cn 9851 . . . . . . . . . . . 12 1 ∈ ℂ
7776rgenw 2907 . . . . . . . . . . 11 𝑦 ∈ ℂ 1 ∈ ℂ
78 eqid 2609 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1)
7978fmpt 6274 . . . . . . . . . . 11 (∀𝑦 ∈ ℂ 1 ∈ ℂ ↔ (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ)
8077, 79mpbi 218 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ
8180fdmi 5951 . . . . . . . . 9 dom (𝑦 ∈ ℂ ↦ 1) = ℂ
8275, 81eqtri 2631 . . . . . . . 8 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ
8382a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ)
8423, 70, 71, 83dvcmulf 23459 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D ((ℂ × {𝐴}) ∘𝑓 · (𝑦 ∈ ℂ ↦ 𝑦))) = ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8567, 84eqtrd 2643 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8685dmeqd 5235 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
87 ovex 6555 . . . . . . 7 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V
8887a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V)
89 offval3 7031 . . . . . 6 (((ℂ × {𝐴}) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V) → ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9039, 88, 89syl2anc 690 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9190dmeqd 5235 . . . 4 (𝐴 ∈ ℂ → dom ((ℂ × {𝐴}) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9246, 83ineq12d 3776 . . . . . . . 8 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (ℂ ∩ ℂ))
9392, 54eqtrd 2643 . . . . . . 7 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = ℂ)
9493mpteq1d 4660 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9594dmeqd 5235 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
96 eqid 2609 . . . . . 6 (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)))
97 fvconst2g 6350 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ × {𝐴})‘𝑤) = 𝐴)
9874fveq1i 6089 . . . . . . . . . . 11 ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤)
9998a1i 11 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤))
100 eqidd 2610 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1))
101 eqidd 2610 . . . . . . . . . . 11 ((𝑤 ∈ ℂ ∧ 𝑦 = 𝑤) → 1 = 1)
10276a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ℂ → 1 ∈ ℂ)
103100, 101, 48, 102fvmptd 6182 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑦 ∈ ℂ ↦ 1)‘𝑤) = 1)
10499, 103eqtrd 2643 . . . . . . . . 9 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
105104adantl 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
10697, 105oveq12d 6545 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) = (𝐴 · 1))
107 mulcl 9877 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
10876, 107mpan2 702 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · 1) ∈ ℂ)
109108adantr 479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
110106, 109eqeltrd 2687 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) ∈ ℂ)
11196, 110dmmptd 5923 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
11295, 111eqtrd 2643 . . . 4 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
11386, 91, 1123eqtrd 2647 . . 3 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
11423, 23, 2, 5, 29, 113dvcof 23462 . 2 (𝐴 ∈ ℂ → (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
11524a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D sin) = cos)
116 coscn 23948 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . 6 (𝐴 ∈ ℂ → cos ∈ (ℂ–cn→ℂ))
118115, 117eqeltrd 2687 . . . . 5 (𝐴 ∈ ℂ → (ℂ D sin) ∈ (ℂ–cn→ℂ))
11934mptex 6368 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V
120119a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V)
121 coexg 6988 . . . . 5 (((ℂ D sin) ∈ (ℂ–cn→ℂ) ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
122118, 120, 121syl2anc 690 . . . 4 (𝐴 ∈ ℂ → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
123 simpl 471 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
124 0cnd 9890 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
12523, 71dvmptc 23472 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝐴)) = (𝑦 ∈ ℂ ↦ 0))
126 simpr 475 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
12776a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
12874a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
12923, 123, 124, 125, 126, 127, 128dvmptmul 23475 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))))
130126mul02d 10086 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · 𝑦) = 0)
131123mulid2d 9915 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝐴) = 𝐴)
132130, 131oveq12d 6545 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
133123addid2d 10089 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
134132, 133eqtrd 2643 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
135134mpteq2dva 4666 . . . . . 6 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))) = (𝑦 ∈ ℂ ↦ 𝐴))
136129, 135eqtrd 2643 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
13734mptex 6368 . . . . . 6 (𝑦 ∈ ℂ ↦ 𝐴) ∈ V
138137a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈ V)
139136, 138eqeltrd 2687 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
140 offval3 7031 . . . 4 ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
141122, 139, 140syl2anc 690 . . 3 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
142 frn 5952 . . . . . . . . . 10 ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
1435, 142syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
144143, 29sseqtr4d 3604 . . . . . . . 8 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin))
145 dmcosseq 5295 . . . . . . . 8 (ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin) → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
146144, 145syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
147 ovex 6555 . . . . . . . . 9 (𝐴 · 𝑦) ∈ V
148147, 4dmmpti 5922 . . . . . . . 8 dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ
149148a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ)
150146, 149eqtrd 2643 . . . . . 6 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
151150, 113ineq12d 3776 . . . . 5 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (ℂ ∩ ℂ))
152151, 54eqtrd 2643 . . . 4 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = ℂ)
153152mpteq1d 4660 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
15412coscld 14649 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘(𝐴 · 𝑤)) ∈ ℂ)
155 simpl 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝐴 ∈ ℂ)
156154, 155mulcomd 9918 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos‘(𝐴 · 𝑤)) · 𝐴) = (𝐴 · (cos‘(𝐴 · 𝑤))))
157156mpteq2dva 4666 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
15824coeq1i 5191 . . . . . . . . 9 ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
159158a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
160159fveq1d 6090 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))
161 ffun 5947 . . . . . . . . . 10 ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
1625, 161syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
163162adantr 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
16411, 148syl6eleqr 2698 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
165 fvco 6169 . . . . . . . 8 ((Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∧ 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
166163, 164, 165syl2anc 690 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
16713fveq2d 6092 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (cos‘(𝐴 · 𝑤)))
168160, 166, 1673eqtrd 2647 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘(𝐴 · 𝑤)))
169136adantr 479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
170 eqidd 2610 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐴)
171169, 170, 11, 155fvmptd 6182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = 𝐴)
172168, 171oveq12d 6545 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤)) = ((cos‘(𝐴 · 𝑤)) · 𝐴))
173172mpteq2dva 4666 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)))
1749fveq2d 6092 . . . . . . 7 (𝑦 = 𝑤 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑤)))
175174oveq2d 6543 . . . . . 6 (𝑦 = 𝑤 → (𝐴 · (cos‘(𝐴 · 𝑦))) = (𝐴 · (cos‘(𝐴 · 𝑤))))
176175cbvmptv 4672 . . . . 5 (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤))))
177176a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
178157, 173, 1773eqtr4d 2653 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
179141, 153, 1783eqtrd 2647 . 2 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘𝑓 · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
18021, 114, 1793eqtrd 2647 1 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wtru 1475  wcel 1976  wral 2895  Vcvv 3172  cin 3538  wss 3539  {csn 4124  {cpr 4126  cmpt 4637   × cxp 5026  dom cdm 5028  ran crn 5029  ccom 5032  Fun wfun 5784  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6771  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798  sincsin 14582  cosccos 14583  cnccncf 22435   D cdv 23378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382
This theorem is referenced by:  dvasinbx  38634  itgcoscmulx  38685  dirkeritg  38819  dirkercncflem2  38821
  Copyright terms: Public domain W3C validator