Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinax Structured version   Visualization version   GIF version

Theorem dvsinax 42203
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvsinax (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Distinct variable group:   𝑦,𝐴

Proof of Theorem dvsinax
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sinf 15480 . . . . . 6 sin:ℂ⟶ℂ
21a1i 11 . . . . 5 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
3 mulcl 10624 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
43fmpttd 6882 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ)
5 fcompt 6898 . . . . 5 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ) → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
62, 4, 5syl2anc 586 . . . 4 (𝐴 ∈ ℂ → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
7 eqidd 2825 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
8 oveq2 7167 . . . . . . . 8 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
98adantl 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → (𝐴 · 𝑦) = (𝐴 · 𝑤))
10 simpr 487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ ℂ)
11 mulcl 10624 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 𝑤) ∈ ℂ)
127, 9, 10, 11fvmptd 6778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤) = (𝐴 · 𝑤))
1312fveq2d 6677 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (sin‘(𝐴 · 𝑤)))
1413mpteq2dva 5164 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))))
15 oveq2 7167 . . . . . . 7 (𝑤 = 𝑦 → (𝐴 · 𝑤) = (𝐴 · 𝑦))
1615fveq2d 6677 . . . . . 6 (𝑤 = 𝑦 → (sin‘(𝐴 · 𝑤)) = (sin‘(𝐴 · 𝑦)))
1716cbvmptv 5172 . . . . 5 (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))
1817a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
196, 14, 183eqtrrd 2864 . . 3 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) = (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
2019oveq2d 7175 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
21 cnelprrecn 10633 . . . 4 ℂ ∈ {ℝ, ℂ}
2221a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
23 dvsin 24582 . . . . . 6 (ℂ D sin) = cos
2423dmeqi 5776 . . . . 5 dom (ℂ D sin) = dom cos
25 cosf 15481 . . . . . 6 cos:ℂ⟶ℂ
2625fdmi 6527 . . . . 5 dom cos = ℂ
2724, 26eqtri 2847 . . . 4 dom (ℂ D sin) = ℂ
2827a1i 11 . . 3 (𝐴 ∈ ℂ → dom (ℂ D sin) = ℂ)
29 id 22 . . . . . . . . . . 11 (𝑦 = 𝑤𝑦 = 𝑤)
3029cbvmptv 5172 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑤 ∈ ℂ ↦ 𝑤)
3130oveq2i 7170 . . . . . . . . 9 ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤))
3231a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)))
33 cnex 10621 . . . . . . . . . . 11 ℂ ∈ V
3433a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ℂ ∈ V)
35 snex 5335 . . . . . . . . . . 11 {𝐴} ∈ V
3635a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → {𝐴} ∈ V)
3734, 36xpexd 7477 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ V)
3833mptex 6989 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ 𝑤) ∈ V
3938a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ V)
40 offval3 7686 . . . . . . . . 9 (((ℂ × {𝐴}) ∈ V ∧ (𝑤 ∈ ℂ ↦ 𝑤) ∈ V) → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
4137, 39, 40syl2anc 586 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
42 fconst6g 6571 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
4342fdmd 6526 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (ℂ × {𝐴}) = ℂ)
44 eqid 2824 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤)
45 id 22 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
4644, 45fmpti 6879 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ 𝑤):ℂ⟶ℂ
4746fdmi 6527 . . . . . . . . . . . . 13 dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ
4847a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ)
4943, 48ineq12d 4193 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = (ℂ ∩ ℂ))
50 inidm 4198 . . . . . . . . . . . 12 (ℂ ∩ ℂ) = ℂ
5150a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ ∩ ℂ) = ℂ)
5249, 51eqtrd 2859 . . . . . . . . . 10 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = ℂ)
5352mpteq1d 5158 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
54 fvconst2g 6967 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ × {𝐴})‘𝑦) = 𝐴)
55 eqidd 2825 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤))
56 simpr 487 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
57 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
5855, 56, 57, 57fvmptd 6778 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
5958adantl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6054, 59oveq12d 7177 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦)) = (𝐴 · 𝑦))
6160mpteq2dva 5164 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6253, 61eqtrd 2859 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6332, 41, 623eqtrrd 2864 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)))
6463oveq2d 7175 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))))
65 eqid 2824 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑦 ∈ ℂ ↦ 𝑦)
6665, 57fmpti 6879 . . . . . . . 8 (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ
6766a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ)
68 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6921a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
7069dvmptid 24557 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
7170mptru 1543 . . . . . . . . . 10 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)
7271dmeqi 5776 . . . . . . . . 9 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = dom (𝑦 ∈ ℂ ↦ 1)
73 ax-1cn 10598 . . . . . . . . . . . 12 1 ∈ ℂ
7473rgenw 3153 . . . . . . . . . . 11 𝑦 ∈ ℂ 1 ∈ ℂ
75 eqid 2824 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1)
7675fmpt 6877 . . . . . . . . . . 11 (∀𝑦 ∈ ℂ 1 ∈ ℂ ↔ (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ)
7774, 76mpbi 232 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ
7877fdmi 6527 . . . . . . . . 9 dom (𝑦 ∈ ℂ ↦ 1) = ℂ
7972, 78eqtri 2847 . . . . . . . 8 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ
8079a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ)
8122, 67, 68, 80dvcmulf 24545 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8264, 81eqtrd 2859 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8382dmeqd 5777 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
84 ovexd 7194 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V)
85 offval3 7686 . . . . . 6 (((ℂ × {𝐴}) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V) → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8637, 84, 85syl2anc 586 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8786dmeqd 5777 . . . 4 (𝐴 ∈ ℂ → dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8843, 80ineq12d 4193 . . . . . . . 8 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (ℂ ∩ ℂ))
8988, 51eqtrd 2859 . . . . . . 7 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = ℂ)
9089mpteq1d 5158 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9190dmeqd 5777 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
92 eqid 2824 . . . . . 6 (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)))
93 fvconst2g 6967 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ × {𝐴})‘𝑤) = 𝐴)
9471fveq1i 6674 . . . . . . . . . . 11 ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤)
9594a1i 11 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤))
96 eqidd 2825 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1))
97 eqidd 2825 . . . . . . . . . . 11 ((𝑤 ∈ ℂ ∧ 𝑦 = 𝑤) → 1 = 1)
9873a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ℂ → 1 ∈ ℂ)
9996, 97, 45, 98fvmptd 6778 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑦 ∈ ℂ ↦ 1)‘𝑤) = 1)
10095, 99eqtrd 2859 . . . . . . . . 9 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
101100adantl 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
10293, 101oveq12d 7177 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) = (𝐴 · 1))
103 mulcl 10624 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
10473, 103mpan2 689 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · 1) ∈ ℂ)
105104adantr 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
106102, 105eqeltrd 2916 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) ∈ ℂ)
10792, 106dmmptd 6496 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10891, 107eqtrd 2859 . . . 4 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10983, 87, 1083eqtrd 2863 . . 3 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
11022, 22, 2, 4, 28, 109dvcof 24548 . 2 (𝐴 ∈ ℂ → (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
11123a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D sin) = cos)
112 coscn 25036 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
113112a1i 11 . . . . . 6 (𝐴 ∈ ℂ → cos ∈ (ℂ–cn→ℂ))
114111, 113eqeltrd 2916 . . . . 5 (𝐴 ∈ ℂ → (ℂ D sin) ∈ (ℂ–cn→ℂ))
11533mptex 6989 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V
116115a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V)
117 coexg 7637 . . . . 5 (((ℂ D sin) ∈ (ℂ–cn→ℂ) ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
118114, 116, 117syl2anc 586 . . . 4 (𝐴 ∈ ℂ → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
119 ovexd 7194 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
120 offval3 7686 . . . 4 ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
121118, 119, 120syl2anc 586 . . 3 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
1224frnd 6524 . . . . . . . . 9 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
123122, 28sseqtrrd 4011 . . . . . . . 8 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin))
124 dmcosseq 5847 . . . . . . . 8 (ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin) → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
125123, 124syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
126 ovex 7192 . . . . . . . . 9 (𝐴 · 𝑦) ∈ V
127 eqid 2824 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))
128126, 127dmmpti 6495 . . . . . . . 8 dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ
129128a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ)
130125, 129eqtrd 2859 . . . . . 6 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
131130, 109ineq12d 4193 . . . . 5 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (ℂ ∩ ℂ))
132131, 51eqtrd 2859 . . . 4 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = ℂ)
133132mpteq1d 5158 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
13411coscld 15487 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘(𝐴 · 𝑤)) ∈ ℂ)
135 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝐴 ∈ ℂ)
136134, 135mulcomd 10665 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos‘(𝐴 · 𝑤)) · 𝐴) = (𝐴 · (cos‘(𝐴 · 𝑤))))
137136mpteq2dva 5164 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
13823coeq1i 5733 . . . . . . . . 9 ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
139138a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
140139fveq1d 6675 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))
1414ffund 6521 . . . . . . . . 9 (𝐴 ∈ ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
142141adantr 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
14310, 128eleqtrrdi 2927 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
144 fvco 6762 . . . . . . . 8 ((Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∧ 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
145142, 143, 144syl2anc 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
14612fveq2d 6677 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (cos‘(𝐴 · 𝑤)))
147140, 145, 1463eqtrd 2863 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘(𝐴 · 𝑤)))
148 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
149 0cnd 10637 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
15022, 68dvmptc 24558 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝐴)) = (𝑦 ∈ ℂ ↦ 0))
151 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
15273a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
15371a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
15422, 148, 149, 150, 151, 152, 153dvmptmul 24561 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))))
155151mul02d 10841 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · 𝑦) = 0)
156148mulid2d 10662 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝐴) = 𝐴)
157155, 156oveq12d 7177 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
158148addid2d 10844 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
159157, 158eqtrd 2859 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
160159mpteq2dva 5164 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))) = (𝑦 ∈ ℂ ↦ 𝐴))
161154, 160eqtrd 2859 . . . . . . . 8 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
162161adantr 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
163 eqidd 2825 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐴)
164162, 163, 10, 135fvmptd 6778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = 𝐴)
165147, 164oveq12d 7177 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤)) = ((cos‘(𝐴 · 𝑤)) · 𝐴))
166165mpteq2dva 5164 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)))
1678fveq2d 6677 . . . . . . 7 (𝑦 = 𝑤 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑤)))
168167oveq2d 7175 . . . . . 6 (𝑦 = 𝑤 → (𝐴 · (cos‘(𝐴 · 𝑦))) = (𝐴 · (cos‘(𝐴 · 𝑤))))
169168cbvmptv 5172 . . . . 5 (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤))))
170169a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
171137, 166, 1703eqtr4d 2869 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
172121, 133, 1713eqtrd 2863 . 2 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
17320, 110, 1723eqtrd 2863 1 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wtru 1537  wcel 2113  wral 3141  Vcvv 3497  cin 3938  wss 3939  {csn 4570  {cpr 4572  cmpt 5149   × cxp 5556  dom cdm 5558  ran crn 5559  ccom 5562  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  sincsin 15420  cosccos 15421  cnccncf 23487   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvasinbx  42211  itgcoscmulx  42260  dirkeritg  42394  dirkercncflem2  42396
  Copyright terms: Public domain W3C validator