Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvtaylp Structured version   Visualization version   GIF version

Theorem dvtaylp 24062
 Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
dvtaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvtaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvtaylp.a (𝜑𝐴𝑆)
dvtaylp.n (𝜑𝑁 ∈ ℕ0)
dvtaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
Assertion
Ref Expression
dvtaylp (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))

Proof of Theorem dvtaylp
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6168 . . . . . 6 (TopOpen‘ℂfld) ∈ V
2 eqid 2621 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32cnfldtopon 22526 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
43toponunii 20661 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
54restid 16034 . . . . . 6 ((TopOpen‘ℂfld) ∈ V → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
61, 5ax-mp 5 . . . . 5 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
76eqcomi 2630 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8 cnelprrecn 9989 . . . . 5 ℂ ∈ {ℝ, ℂ}
98a1i 11 . . . 4 (𝜑 → ℂ ∈ {ℝ, ℂ})
10 toponmax 20670 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
113, 10mp1i 13 . . . 4 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
12 fzfid 12728 . . . 4 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
13 dvtaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
1413adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑆 ∈ {ℝ, ℂ})
15 cnex 9977 . . . . . . . . . . . 12 ℂ ∈ V
1615a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ∈ V)
17 dvtaylp.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℂ)
18 dvtaylp.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
19 elpm2r 7835 . . . . . . . . . . 11 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2016, 13, 17, 18, 19syl22anc 1324 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
2120adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 elfznn0 12390 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
2322adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
24 dvnf 23630 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
2514, 21, 23, 24syl3anc 1323 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘):dom ((𝑆 D𝑛 𝐹)‘𝑘)⟶ℂ)
26 0z 11348 . . . . . . . . . . . 12 0 ∈ ℤ
27 dvtaylp.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
28 peano2nn0 11293 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁 + 1) ∈ ℕ0)
3029nn0zd 11440 . . . . . . . . . . . 12 (𝜑 → (𝑁 + 1) ∈ ℤ)
31 fzval2 12287 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
3226, 30, 31sylancr 694 . . . . . . . . . . 11 (𝜑 → (0...(𝑁 + 1)) = ((0[,](𝑁 + 1)) ∩ ℤ))
3332eleq2d 2684 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↔ 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)))
3433biimpa 501 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ))
35 dvtaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
3613, 17, 18, 29, 35taylplem1 24055 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0[,](𝑁 + 1)) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3734, 36syldan 487 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
3825, 37ffvelrnd 6326 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
39 faccl 13026 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4023, 39syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℕ)
4140nncnd 10996 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ∈ ℂ)
4240nnne0d 11025 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (!‘𝑘) ≠ 0)
4338, 41, 42divcld 10761 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
44433adant3 1079 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
45 simp3 1061 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
46 recnprss 23608 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4713, 46syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
4818, 47sstrd 3598 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
49 dvnbss 23631 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑁 + 1) ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
5013, 20, 29, 49syl3anc 1323 . . . . . . . . . . 11 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ dom 𝐹)
51 fdm 6018 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
5217, 51syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐴)
5350, 52sseqtrd 3626 . . . . . . . . . 10 (𝜑 → dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) ⊆ 𝐴)
5453, 35sseldd 3589 . . . . . . . . 9 (𝜑𝐵𝐴)
5548, 54sseldd 3589 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
56553ad2ant1 1080 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
5745, 56subcld 10352 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
58223ad2ant2 1081 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℕ0)
5957, 58expcld 12964 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
6044, 59mulcld 10020 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) ∈ ℂ)
61 0cnd 9993 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
6258nn0cnd 11313 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
6362adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
6457adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑥𝐵) ∈ ℂ)
6558adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
66 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
6766neqned 2797 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ≠ 0)
68 elnnne0 11266 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0𝑘 ≠ 0))
6965, 67, 68sylanbrc 697 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
70 nnm1nn0 11294 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
7169, 70syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
7264, 71expcld 12964 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
7363, 72mulcld 10020 . . . . . 6 (((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))) ∈ ℂ)
7461, 73ifclda 4098 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
7544, 74mulcld 10020 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑥 ∈ ℂ) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
768a1i 11 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ℂ ∈ {ℝ, ℂ})
77593expa 1262 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → ((𝑥𝐵)↑𝑘) ∈ ℂ)
78743expa 1262 . . . . 5 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
79573expa 1262 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (𝑥𝐵) ∈ ℂ)
80 1cnd 10016 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
81 simpr 477 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
8223adantr 481 . . . . . . . 8 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → 𝑘 ∈ ℕ0)
8381, 82expcld 12964 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → (𝑦𝑘) ∈ ℂ)
84 c0ex 9994 . . . . . . . . 9 0 ∈ V
85 ovex 6643 . . . . . . . . 9 (𝑘 · (𝑦↑(𝑘 − 1))) ∈ V
8684, 85ifex 4134 . . . . . . . 8 if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V
8786a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑦 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) ∈ V)
88 simpr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
8976dvmptid 23660 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
9055ad2antrr 761 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
91 0cnd 9993 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → 0 ∈ ℂ)
9255adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵 ∈ ℂ)
9376, 92dvmptc 23661 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ 𝐵)) = (𝑥 ∈ ℂ ↦ 0))
9476, 88, 80, 89, 90, 91, 93dvmptsub 23670 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ (1 − 0)))
95 1m0e1 11091 . . . . . . . . 9 (1 − 0) = 1
9695mpteq2i 4711 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (1 − 0)) = (𝑥 ∈ ℂ ↦ 1)
9794, 96syl6eq 2671 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝐵))) = (𝑥 ∈ ℂ ↦ 1))
98 dvexp2 23657 . . . . . . . 8 (𝑘 ∈ ℕ0 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
9923, 98syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1))))))
100 oveq1 6622 . . . . . . 7 (𝑦 = (𝑥𝐵) → (𝑦𝑘) = ((𝑥𝐵)↑𝑘))
101 oveq1 6622 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝑦↑(𝑘 − 1)) = ((𝑥𝐵)↑(𝑘 − 1)))
102101oveq2d 6631 . . . . . . . 8 (𝑦 = (𝑥𝐵) → (𝑘 · (𝑦↑(𝑘 − 1))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
103102ifeq2d 4083 . . . . . . 7 (𝑦 = (𝑥𝐵) → if(𝑘 = 0, 0, (𝑘 · (𝑦↑(𝑘 − 1)))) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
10476, 76, 79, 80, 83, 87, 97, 99, 100, 103dvmptco 23675 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)))
10578mulid1d 10017 . . . . . . 7 (((𝜑𝑘 ∈ (0...(𝑁 + 1))) ∧ 𝑥 ∈ ℂ) → (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1) = if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
106105mpteq2dva 4714 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑥 ∈ ℂ ↦ (if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) · 1)) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
107104, 106eqtrd 2655 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥𝐵)↑𝑘))) = (𝑥 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
10876, 77, 78, 107, 43dvmptcmul 23667 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (ℂ D (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
1097, 2, 9, 11, 12, 60, 75, 108dvmptfsum 23676 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))))
110 1zzd 11368 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℤ)
111 0zd 11349 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℤ)
11227nn0zd 11440 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
113112adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℤ)
114 dvfg 23610 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11513, 114syl 17 . . . . . . 7 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
11647, 17, 18dvbss 23605 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
117116, 18sstrd 3598 . . . . . . 7 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆)
118 1nn0 11268 . . . . . . . . . . . 12 1 ∈ ℕ0
119118a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
120 dvnadd 23632 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
12113, 20, 119, 27, 120syl22anc 1324 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)))
122 dvn1 23629 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
12347, 20, 122syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
124123oveq2d 6631 . . . . . . . . . . 11 (𝜑 → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
125124fveq1d 6160 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘𝑁) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
126 1cnd 10016 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
12727nn0cnd 11313 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
128126, 127addcomd 10198 . . . . . . . . . . 11 (𝜑 → (1 + 𝑁) = (𝑁 + 1))
129128fveq2d 6162 . . . . . . . . . 10 (𝜑 → ((𝑆 D𝑛 𝐹)‘(1 + 𝑁)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
130121, 125, 1293eqtr3d 2663 . . . . . . . . 9 (𝜑 → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
131130dmeqd 5296 . . . . . . . 8 (𝜑 → dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)))
13235, 131eleqtrrd 2701 . . . . . . 7 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑁))
13313, 115, 117, 27, 132taylplem2 24056 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑗 ∈ (0...𝑁)) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) ∈ ℂ)
134 fveq2 6158 . . . . . . . . 9 (𝑗 = (𝑘 − 1) → ((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
135134fveq1d 6160 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
136 fveq2 6158 . . . . . . . 8 (𝑗 = (𝑘 − 1) → (!‘𝑗) = (!‘(𝑘 − 1)))
137135, 136oveq12d 6633 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
138 oveq2 6623 . . . . . . 7 (𝑗 = (𝑘 − 1) → ((𝑥𝐵)↑𝑗) = ((𝑥𝐵)↑(𝑘 − 1)))
139137, 138oveq12d 6633 . . . . . 6 (𝑗 = (𝑘 − 1) → (((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
140110, 111, 113, 133, 139fsumshft 14459 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
141 elfznn 12328 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
142141adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ)
143142nnne0d 11025 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ≠ 0)
144 ifnefalse 4076 . . . . . . . . . 10 (𝑘 ≠ 0 → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
145143, 144syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))
146145oveq2d 6631 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
147 simpll 789 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝜑)
148 1eluzge0 11692 . . . . . . . . . . . . 13 1 ∈ (ℤ‘0)
149 fzss1 12338 . . . . . . . . . . . . 13 (1 ∈ (ℤ‘0) → (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
150148, 149ax-mp 5 . . . . . . . . . . . 12 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
151150sseli 3584 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ (0...(𝑁 + 1)))
152151adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
153147, 152, 43syl2anc 692 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
154142nncnd 10996 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
155 simplr 791 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ ℂ)
15655ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐵 ∈ ℂ)
157155, 156subcld 10352 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑥𝐵) ∈ ℂ)
158142, 70syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 − 1) ∈ ℕ0)
159157, 158expcld 12964 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑥𝐵)↑(𝑘 − 1)) ∈ ℂ)
160153, 154, 159mulassd 10023 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))
161 facp1 13021 . . . . . . . . . . . . 13 ((𝑘 − 1) ∈ ℕ0 → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
162158, 161syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)))
163 1cnd 10016 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
164154, 163npcand 10356 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
165164fveq2d 6162 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘((𝑘 − 1) + 1)) = (!‘𝑘))
166164oveq2d 6631 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((!‘(𝑘 − 1)) · ((𝑘 − 1) + 1)) = ((!‘(𝑘 − 1)) · 𝑘))
167162, 165, 1663eqtr3d 2663 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘𝑘) = ((!‘(𝑘 − 1)) · 𝑘))
168167oveq2d 6631 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)))
16923nn0cnd 11313 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℂ)
17038, 169, 41, 42div23d 10798 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
171147, 152, 170syl2anc 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / (!‘𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘))
172147, 152, 38syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) ∈ ℂ)
173 faccl 13026 . . . . . . . . . . . . . 14 ((𝑘 − 1) ∈ ℕ0 → (!‘(𝑘 − 1)) ∈ ℕ)
174158, 173syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℕ)
175174nncnd 10996 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ∈ ℂ)
176174nnne0d 11025 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (!‘(𝑘 − 1)) ≠ 0)
177172, 175, 154, 176, 143divcan5rd 10788 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))))
17813ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑆 ∈ {ℝ, ℂ})
17920ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐹 ∈ (ℂ ↑pm 𝑆))
180118a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℕ0)
181 dvnadd 23632 . . . . . . . . . . . . . . 15 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (1 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
182178, 179, 180, 158, 181syl22anc 1324 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))))
183123ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘1) = (𝑆 D 𝐹))
184183oveq2d 6631 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1)) = (𝑆 D𝑛 (𝑆 D 𝐹)))
185184fveq1d 6160 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘1))‘(𝑘 − 1)) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
186163, 154pncan3d 10355 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (1 + (𝑘 − 1)) = 𝑘)
187186fveq2d 6162 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘(1 + (𝑘 − 1))) = ((𝑆 D𝑛 𝐹)‘𝑘))
188182, 185, 1873eqtr3rd 2664 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑆 D𝑛 𝐹)‘𝑘) = ((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1)))
189188fveq1d 6160 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) = (((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵))
190189oveq1d 6630 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘(𝑘 − 1))) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
191177, 190eqtrd 2655 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) · 𝑘) / ((!‘(𝑘 − 1)) · 𝑘)) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
192168, 171, 1913eqtr3d 2663 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) = ((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))))
193192oveq1d 6630 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 𝑘) · ((𝑥𝐵)↑(𝑘 − 1))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
194146, 160, 1933eqtr2d 2661 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
195194sumeq2dv 14383 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
196 0p1e1 11092 . . . . . . . 8 (0 + 1) = 1
197196oveq1i 6625 . . . . . . 7 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
198197sumeq1i 14378 . . . . . 6 Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))) = Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1)))
199195, 198syl6eqr 2673 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((((𝑆 D𝑛 (𝑆 D 𝐹))‘(𝑘 − 1))‘𝐵) / (!‘(𝑘 − 1))) · ((𝑥𝐵)↑(𝑘 − 1))))
200150a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
20178an32s 845 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
202151, 201sylan2 491 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) ∈ ℂ)
203153, 202mulcld 10020 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) ∈ ℂ)
204 eldif 3570 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) ↔ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1))))
20568biimpri 218 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑘 ≠ 0) → 𝑘 ∈ ℕ)
20622, 205sylan 488 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ ℕ)
207 nnuz 11683 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
208206, 207syl6eleq 2708 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (ℤ‘1))
209 elfzuz3 12297 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑁 + 1) ∈ (ℤ𝑘))
210209adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → (𝑁 + 1) ∈ (ℤ𝑘))
211 elfzuzb 12294 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑁 + 1)) ↔ (𝑘 ∈ (ℤ‘1) ∧ (𝑁 + 1) ∈ (ℤ𝑘)))
212208, 210, 211sylanbrc 697 . . . . . . . . . . . . . 14 ((𝑘 ∈ (0...(𝑁 + 1)) ∧ 𝑘 ≠ 0) → 𝑘 ∈ (1...(𝑁 + 1)))
213212ex 450 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
214213adantl 482 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 ≠ 0 → 𝑘 ∈ (1...(𝑁 + 1))))
215214necon1bd 2808 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (¬ 𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 = 0))
216215impr 648 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑁 + 1)) ∧ ¬ 𝑘 ∈ (1...(𝑁 + 1)))) → 𝑘 = 0)
217204, 216sylan2b 492 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → 𝑘 = 0)
218217iftrued 4072 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))) = 0)
219218oveq2d 6631 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0))
220 eldifi 3716 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
22143adantlr 750 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
222220, 221sylan2 491 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℂ)
223222mul01d 10195 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · 0) = 0)
224219, 223eqtrd 2655 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑁 + 1)) ∖ (1...(𝑁 + 1)))) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = 0)
225 fzfid 12728 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...(𝑁 + 1)) ∈ Fin)
226200, 203, 224, 225fsumss 14405 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (1...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))))
227140, 199, 2263eqtr2rd 2662 . . . 4 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1))))) = Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗)))
228227mpteq2dva 4714 . . 3 (𝜑 → (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · if(𝑘 = 0, 0, (𝑘 · ((𝑥𝐵)↑(𝑘 − 1)))))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
229109, 228eqtrd 2655 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
230 eqid 2621 . . . 4 ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)
23113, 17, 18, 29, 35, 230taylpfval 24057 . . 3 (𝜑 → ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
232231oveq2d 6631 . 2 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (ℂ D (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 + 1))(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
233 eqid 2621 . . 3 (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)
23413, 115, 117, 27, 132, 233taylpfval 24057 . 2 (𝜑 → (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((((𝑆 D𝑛 (𝑆 D 𝐹))‘𝑗)‘𝐵) / (!‘𝑗)) · ((𝑥𝐵)↑𝑗))))
235229, 232, 2343eqtr4d 2665 1 (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3190   ∖ cdif 3557   ∩ cin 3559   ⊆ wss 3560  ifcif 4064  {cpr 4157   ↦ cmpt 4683  dom cdm 5084  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ↑pm cpm 7818  ℂcc 9894  ℝcr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   − cmin 10226   / cdiv 10644  ℕcn 10980  ℕ0cn0 11252  ℤcz 11337  ℤ≥cuz 11647  [,]cicc 12136  ...cfz 12284  ↑cexp 12816  !cfa 13016  Σcsu 14366   ↾t crest 16021  TopOpenctopn 16022  ℂfldccnfld 19686  TopOnctopon 20655   D cdv 23567   D𝑛 cdvn 23568   Tayl ctayl 24045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-fac 13017  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-tsms 21870  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-dvn 23572  df-tayl 24047 This theorem is referenced by:  dvntaylp  24063
 Copyright terms: Public domain W3C validator