Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocuni Structured version   Visualization version   GIF version

Theorem dya2iocuni 30126
Description: Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 30123. (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocuni (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑐,𝑣,𝐴   𝑅,𝑐
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑐)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑐)

Proof of Theorem dya2iocuni
Dummy variables 𝑚 𝑝 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3666 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅
2 sxbrsiga.0 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 dya2ioc.1 . . . . . . . 8 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 dya2ioc.2 . . . . . . . 8 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
52, 3, 4dya2iocrfn 30122 . . . . . . 7 𝑅 Fn (ran 𝐼 × ran 𝐼)
6 zex 11330 . . . . . . . . . . 11 ℤ ∈ V
76, 6mpt2ex 7192 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) ∈ V
83, 7eqeltri 2694 . . . . . . . . 9 𝐼 ∈ V
98rnex 7047 . . . . . . . 8 ran 𝐼 ∈ V
109, 9xpex 6915 . . . . . . 7 (ran 𝐼 × ran 𝐼) ∈ V
11 fnex 6435 . . . . . . 7 ((𝑅 Fn (ran 𝐼 × ran 𝐼) ∧ (ran 𝐼 × ran 𝐼) ∈ V) → 𝑅 ∈ V)
125, 10, 11mp2an 707 . . . . . 6 𝑅 ∈ V
1312rnex 7047 . . . . 5 ran 𝑅 ∈ V
1413elpw2 4788 . . . 4 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 ↔ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ ran 𝑅)
151, 14mpbir 221 . . 3 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅
1615a1i 11 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅)
17 rex0 3914 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)
18 rexeq 3128 . . . . . . . . . . 11 (𝐴 = ∅ → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧 ∈ ∅ (𝑧𝑏𝑏𝐴)))
1917, 18mtbiri 317 . . . . . . . . . 10 (𝐴 = ∅ → ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2019ralrimivw 2961 . . . . . . . . 9 (𝐴 = ∅ → ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
21 rabeq0 3931 . . . . . . . . 9 ({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅ ↔ ∀𝑏 ∈ ran 𝑅 ¬ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴))
2220, 21sylibr 224 . . . . . . . 8 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
2322unieqd 4412 . . . . . . 7 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
24 uni0 4431 . . . . . . 7 ∅ = ∅
2523, 24syl6eq 2671 . . . . . 6 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = ∅)
26 0ss 3944 . . . . . 6 ∅ ⊆ 𝐴
2725, 26syl6eqss 3634 . . . . 5 (𝐴 = ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
28 elequ2 2001 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑧𝑏𝑧𝑝))
29 sseq1 3605 . . . . . . . . . . 11 (𝑏 = 𝑝 → (𝑏𝐴𝑝𝐴))
3028, 29anbi12d 746 . . . . . . . . . 10 (𝑏 = 𝑝 → ((𝑧𝑏𝑏𝐴) ↔ (𝑧𝑝𝑝𝐴)))
3130rexbidv 3045 . . . . . . . . 9 (𝑏 = 𝑝 → (∃𝑧𝐴 (𝑧𝑏𝑏𝐴) ↔ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
3231elrab 3346 . . . . . . . 8 (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
33 simpr 477 . . . . . . . . . . 11 ((𝑧𝑝𝑝𝐴) → 𝑝𝐴)
3433reximi 3005 . . . . . . . . . 10 (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → ∃𝑧𝐴 𝑝𝐴)
35 r19.9rzv 4037 . . . . . . . . . 10 (𝐴 ≠ ∅ → (𝑝𝐴 ↔ ∃𝑧𝐴 𝑝𝐴))
3634, 35syl5ibr 236 . . . . . . . . 9 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑧𝑝𝑝𝐴) → 𝑝𝐴))
3736adantld 483 . . . . . . . 8 (𝐴 ≠ ∅ → ((𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)) → 𝑝𝐴))
3832, 37syl5bi 232 . . . . . . 7 (𝐴 ≠ ∅ → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑝𝐴))
3938ralrimiv 2959 . . . . . 6 (𝐴 ≠ ∅ → ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
40 unissb 4435 . . . . . 6 ( {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴 ↔ ∀𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑝𝐴)
4139, 40sylibr 224 . . . . 5 (𝐴 ≠ ∅ → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
4227, 41pm2.61ine 2873 . . . 4 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴
4342a1i 11 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ⊆ 𝐴)
442, 3, 4dya2iocnei 30125 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴))
45 simpl 473 . . . . . . . . . . 11 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ ran 𝑅)
46 ssel2 3578 . . . . . . . . . . . . . 14 ((𝑝𝐴𝑚𝑝) → 𝑚𝐴)
4746ancoms 469 . . . . . . . . . . . . 13 ((𝑚𝑝𝑝𝐴) → 𝑚𝐴)
4847adantl 482 . . . . . . . . . . . 12 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝐴)
49 simpr 477 . . . . . . . . . . . 12 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑚𝑝𝑝𝐴))
50 elequ1 1994 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (𝑧𝑝𝑚𝑝))
5150anbi1d 740 . . . . . . . . . . . . 13 (𝑧 = 𝑚 → ((𝑧𝑝𝑝𝐴) ↔ (𝑚𝑝𝑝𝐴)))
5251rspcev 3295 . . . . . . . . . . . 12 ((𝑚𝐴 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5348, 49, 52syl2anc 692 . . . . . . . . . . 11 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → ∃𝑧𝐴 (𝑧𝑝𝑝𝐴))
5445, 53jca 554 . . . . . . . . . 10 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ ran 𝑅 ∧ ∃𝑧𝐴 (𝑧𝑝𝑝𝐴)))
5554, 32sylibr 224 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
56 simprl 793 . . . . . . . . 9 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → 𝑚𝑝)
5755, 56jca 554 . . . . . . . 8 ((𝑝 ∈ ran 𝑅 ∧ (𝑚𝑝𝑝𝐴)) → (𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∧ 𝑚𝑝))
5857reximi2 3004 . . . . . . 7 (∃𝑝 ∈ ran 𝑅(𝑚𝑝𝑝𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
5944, 58syl 17 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
60 eluni2 4406 . . . . . 6 (𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ↔ ∃𝑝 ∈ {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}𝑚𝑝)
6159, 60sylibr 224 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑚𝐴) → 𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6261ex 450 . . . 4 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝑚𝐴𝑚 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)}))
6362ssrdv 3589 . . 3 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6443, 63eqssd 3600 . 2 (𝐴 ∈ (𝐽 ×t 𝐽) → {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴)
65 unieq 4410 . . . 4 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → 𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)})
6665eqeq1d 2623 . . 3 (𝑐 = {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} → ( 𝑐 = 𝐴 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴))
6766rspcev 3295 . 2 (({𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} ∈ 𝒫 ran 𝑅 {𝑏 ∈ ran 𝑅 ∣ ∃𝑧𝐴 (𝑧𝑏𝑏𝐴)} = 𝐴) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
6816, 64, 67syl2anc 692 1 (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402   × cxp 5072  ran crn 5075   Fn wfn 5842  cfv 5847  (class class class)co 6604  cmpt2 6606  1c1 9881   + caddc 9883   / cdiv 10628  2c2 11014  cz 11321  (,)cioo 12117  [,)cico 12119  cexp 12800  topGenctg 16019   ×t ctx 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-refld 19870  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-fcls 21655  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-cfil 22961  df-cmet 22963  df-cms 23040  df-limc 23536  df-dv 23537  df-log 24207  df-cxp 24208  df-logb 24403
This theorem is referenced by:  dya2iocucvr  30127  sxbrsigalem1  30128
  Copyright terms: Public domain W3C validator