MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Structured version   Visualization version   GIF version

Theorem dyaddisj 23270
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisj ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisj
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadf 23265 . . . 4 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
3 ffn 6002 . . . 4 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
4 ovelrn 6763 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐴 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐)))
5 ovelrn 6763 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
64, 5anbi12d 746 . . . 4 (𝐹 Fn (ℤ × ℕ0) → ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑))))
72, 3, 6mp2b 10 . . 3 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
8 reeanv 3097 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
97, 8bitr4i 267 . 2 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
10 reeanv 3097 . . . 4 (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
11 nn0re 11245 . . . . . . . 8 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
1211ad2antrl 763 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑐 ∈ ℝ)
13 nn0re 11245 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
1413ad2antll 764 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑑 ∈ ℝ)
151dyaddisjlem 23269 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑐𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
16 ancom 466 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ↔ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ))
17 ancom 466 . . . . . . . . . 10 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ↔ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0))
1816, 17anbi12i 732 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ↔ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)))
191dyaddisjlem 23269 . . . . . . . . 9 ((((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
2018, 19sylanb 489 . . . . . . . 8 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
21 orcom 402 . . . . . . . . . 10 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
22 incom 3783 . . . . . . . . . . 11 (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑)))
2322eqeq1i 2626 . . . . . . . . . 10 ((((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)
2421, 23orbi12i 543 . . . . . . . . 9 (((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
25 df-3or 1037 . . . . . . . . 9 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
26 df-3or 1037 . . . . . . . . 9 ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2724, 25, 263bitr4i 292 . . . . . . . 8 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2820, 27sylib 208 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2912, 14, 15, 28lecasei 10087 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
30 simpl 473 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐴 = (𝑎𝐹𝑐))
3130fveq2d 6152 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐴) = ([,]‘(𝑎𝐹𝑐)))
32 simpr 477 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐵 = (𝑏𝐹𝑑))
3332fveq2d 6152 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐵) = ([,]‘(𝑏𝐹𝑑)))
3431, 33sseq12d 3613 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
3533, 31sseq12d 3613 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐵) ⊆ ([,]‘𝐴) ↔ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
3630fveq2d 6152 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐴) = ((,)‘(𝑎𝐹𝑐)))
3732fveq2d 6152 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐵) = ((,)‘(𝑏𝐹𝑑)))
3836, 37ineq12d 3793 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (((,)‘𝐴) ∩ ((,)‘𝐵)) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))))
3938eqeq1d 2623 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
4034, 35, 393orbi123d 1395 . . . . . 6 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)))
4129, 40syl5ibrcom 237 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4241rexlimdvva 3031 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4310, 42syl5bir 233 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4443rexlimivv 3029 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
459, 44sylbi 207 1 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3o 1035   = wceq 1480  wcel 1987  wrex 2908  cin 3554  wss 3555  c0 3891  cop 4154   class class class wbr 4613   × cxp 5072  ran crn 5075   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  cr 9879  1c1 9881   + caddc 9883  cle 10019   / cdiv 10628  2c2 11014  0cn0 11236  cz 11321  (,)cioo 12117  [,]cicc 12120  cexp 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-ioo 12121  df-icc 12124  df-seq 12742  df-exp 12801
This theorem is referenced by:  dyadmbl  23274  mblfinlem2  33076
  Copyright terms: Public domain W3C validator