Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadf Structured version   Visualization version   GIF version

 Description: The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadf 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
Distinct variable group:   𝑥,𝑦,𝐹

StepHypRef Expression
1 zre 11333 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
21adantr 481 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ)
32lep1d 10907 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 𝑥 ≤ (𝑥 + 1))
4 peano2re 10161 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
52, 4syl 17 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 + 1) ∈ ℝ)
6 2nn 11137 . . . . . . . . . 10 2 ∈ ℕ
7 nnexpcl 12821 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
86, 7mpan 705 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
98adantl 482 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
109nnred 10987 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
119nngt0d 11016 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → 0 < (2↑𝑦))
12 lediv1 10840 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ 0 < (2↑𝑦))) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))))
132, 5, 10, 11, 12syl112anc 1327 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 ≤ (𝑥 + 1) ↔ (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦))))
143, 13mpbid 222 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)))
15 df-br 4619 . . . . 5 ((𝑥 / (2↑𝑦)) ≤ ((𝑥 + 1) / (2↑𝑦)) ↔ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ )
1614, 15sylib 208 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ≤ )
17 nndivre 11008 . . . . . 6 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → (𝑥 / (2↑𝑦)) ∈ ℝ)
181, 8, 17syl2an 494 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
191, 4syl 17 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℝ)
20 nndivre 11008 . . . . . 6 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℕ) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
2119, 8, 20syl2an 494 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
22 opelxpi 5113 . . . . 5 (((𝑥 / (2↑𝑦)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
2318, 21, 22syl2anc 692 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
2416, 23elind 3781 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
2524rgen2 2970 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
26 dyadmbl.1 . . 3 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
2726fmpt2 7189 . 2 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)))
2825, 27mpbi 220 1 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ∩ cin 3558  ⟨cop 4159   class class class wbr 4618   × cxp 5077  ⟶wf 5848  (class class class)co 6610   ↦ cmpt2 6612  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   < clt 10026   ≤ cle 10027   / cdiv 10636  ℕcn 10972  2c2 11022  ℕ0cn0 11244  ℤcz 11329  ↑cexp 12808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-seq 12750  df-exp 12809 This theorem is referenced by:  dyaddisj  23287  dyadmax  23289  dyadmbllem  23290  dyadmbl  23291  opnmbllem  23292  opnmbllem0  33112  mblfinlem2  33114
 Copyright terms: Public domain W3C validator