Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadss Structured version   Visualization version   GIF version

 Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadss (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

StepHypRef Expression
1 simpr 477 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)))
2 simpllr 798 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℤ)
3 simplrr 800 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℕ0)
4 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
54dyadval 23300 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
62, 3, 5syl2anc 692 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
76fveq2d 6162 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
8 df-ov 6618 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
97, 8syl6eqr 2673 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
102zred 11442 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐵 ∈ ℝ)
11 2nn 11145 . . . . . . . . . 10 2 ∈ ℕ
12 nnexpcl 12829 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
1311, 3, 12sylancr 694 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ∈ ℕ)
1410, 13nndivred 11029 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
15 peano2re 10169 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
1610, 15syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐵 + 1) ∈ ℝ)
1716, 13nndivred 11029 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
18 iccssre 12213 . . . . . . . 8 (((𝐵 / (2↑𝐷)) ∈ ℝ ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
1914, 17, 18syl2anc 692 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ℝ)
209, 19eqsstrd 3624 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ)
21 ovolss 23193 . . . . . 6 ((([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∧ ([,]‘(𝐵𝐹𝐷)) ⊆ ℝ) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
221, 20, 21syl2anc 692 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) ≤ (vol*‘([,]‘(𝐵𝐹𝐷))))
23 simplll 797 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐴 ∈ ℤ)
24 simplrl 799 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℕ0)
254dyadovol 23301 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
2623, 24, 25syl2anc 692 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐴𝐹𝐶))) = (1 / (2↑𝐶)))
274dyadovol 23301 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
282, 3, 27syl2anc 692 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (vol*‘([,]‘(𝐵𝐹𝐷))) = (1 / (2↑𝐷)))
2922, 26, 283brtr3d 4654 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷)))
30 nnexpcl 12829 . . . . . 6 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
3111, 24, 30sylancr 694 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐶) ∈ ℕ)
32 nnre 10987 . . . . . . 7 ((2↑𝐷) ∈ ℕ → (2↑𝐷) ∈ ℝ)
33 nngt0 11009 . . . . . . 7 ((2↑𝐷) ∈ ℕ → 0 < (2↑𝐷))
3432, 33jca 554 . . . . . 6 ((2↑𝐷) ∈ ℕ → ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)))
35 nnre 10987 . . . . . . 7 ((2↑𝐶) ∈ ℕ → (2↑𝐶) ∈ ℝ)
36 nngt0 11009 . . . . . . 7 ((2↑𝐶) ∈ ℕ → 0 < (2↑𝐶))
3735, 36jca 554 . . . . . 6 ((2↑𝐶) ∈ ℕ → ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶)))
38 lerec 10866 . . . . . 6 ((((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷)) ∧ ((2↑𝐶) ∈ ℝ ∧ 0 < (2↑𝐶))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
3934, 37, 38syl2an 494 . . . . 5 (((2↑𝐷) ∈ ℕ ∧ (2↑𝐶) ∈ ℕ) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4013, 31, 39syl2anc 692 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → ((2↑𝐷) ≤ (2↑𝐶) ↔ (1 / (2↑𝐶)) ≤ (1 / (2↑𝐷))))
4129, 40mpbird 247 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (2↑𝐷) ≤ (2↑𝐶))
42 2re 11050 . . . . 5 2 ∈ ℝ
4342a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 2 ∈ ℝ)
443nn0zd 11440 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷 ∈ ℤ)
4524nn0zd 11440 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐶 ∈ ℤ)
46 1lt2 11154 . . . . 5 1 < 2
4746a1i 11 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 1 < 2)
4843, 44, 45, 47leexp2d 12995 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → (𝐷𝐶 ↔ (2↑𝐷) ≤ (2↑𝐶)))
4941, 48mpbird 247 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) → 𝐷𝐶)
5049ex 450 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ⊆ wss 3560  ⟨cop 4161   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615   ↦ cmpt2 6617  ℝcr 9895  0cc0 9896  1c1 9897   + caddc 9899   < clt 10034   ≤ cle 10035   / cdiv 10644  ℕcn 10980  2c2 11030  ℕ0cn0 11252  ℤcz 11337  [,]cicc 12136  ↑cexp 12816  vol*covol 23171 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-rest 16023  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690  df-cmp 21130  df-ovol 23173 This theorem is referenced by:  dyadmaxlem  23305
 Copyright terms: Public domain W3C validator