Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e01an Structured version   Visualization version   GIF version

Theorem e01an 39234
Description: Conjunction form of e01 39233. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e01an.1 𝜑
e01an.2 (   𝜓   ▶   𝜒   )
e01an.3 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
e01an (   𝜓   ▶   𝜃   )

Proof of Theorem e01an
StepHypRef Expression
1 e01an.1 . 2 𝜑
2 e01an.2 . 2 (   𝜓   ▶   𝜒   )
3 e01an.3 . . 3 ((𝜑𝜒) → 𝜃)
43ex 449 . 2 (𝜑 → (𝜒𝜃))
51, 2, 4e01 39233 1 (   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  (   wvd1 39102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-vd1 39103
This theorem is referenced by:  unipwrVD  39381
  Copyright terms: Public domain W3C validator