Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e111 Structured version   Visualization version   GIF version

Theorem e111 39216
 Description: A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e111.1 (   𝜑   ▶   𝜓   )
e111.2 (   𝜑   ▶   𝜒   )
e111.3 (   𝜑   ▶   𝜃   )
e111.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
e111 (   𝜑   ▶   𝜏   )

Proof of Theorem e111
StepHypRef Expression
1 e111.3 . . . . 5 (   𝜑   ▶   𝜃   )
21in1 39104 . . . 4 (𝜑𝜃)
3 e111.1 . . . . . . 7 (   𝜑   ▶   𝜓   )
43in1 39104 . . . . . 6 (𝜑𝜓)
5 e111.2 . . . . . . 7 (   𝜑   ▶   𝜒   )
65in1 39104 . . . . . 6 (𝜑𝜒)
7 e111.4 . . . . . 6 (𝜓 → (𝜒 → (𝜃𝜏)))
84, 6, 7syl2im 40 . . . . 5 (𝜑 → (𝜑 → (𝜃𝜏)))
98pm2.43i 52 . . . 4 (𝜑 → (𝜃𝜏))
102, 9syl5com 31 . . 3 (𝜑 → (𝜑𝜏))
1110pm2.43i 52 . 2 (𝜑𝜏)
1211dfvd1ir 39106 1 (   𝜑   ▶   𝜏   )
 Colors of variables: wff setvar class Syntax hints:   → wi 4  (   wvd1 39102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-vd1 39103 This theorem is referenced by:  e110  39218  e101  39220  e011  39222  e100  39224  e010  39226  e001  39228  e11  39230  sbcoreleleqVD  39409  ordelordALTVD  39417
 Copyright terms: Public domain W3C validator