![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e222 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e222.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
e222.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) |
e222.3 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
e222.4 | ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) |
Ref | Expression |
---|---|
e222 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e222.3 | . . . . . . 7 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
2 | 1 | dfvd2i 39118 | . . . . . 6 ⊢ (𝜑 → (𝜓 → 𝜏)) |
3 | 2 | imp 444 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | e222.1 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
5 | 4 | dfvd2i 39118 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
6 | 5 | imp 444 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
7 | e222.2 | . . . . . . . . 9 ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
8 | 7 | dfvd2i 39118 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜃)) |
9 | 8 | imp 444 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
10 | e222.4 | . . . . . . 7 ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) | |
11 | 6, 9, 10 | syl2im 40 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂))) |
12 | 11 | pm2.43i 52 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜏 → 𝜂)) |
13 | 3, 12 | syl5com 31 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜂)) |
14 | 13 | pm2.43i 52 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜂) |
15 | 14 | ex 449 | . 2 ⊢ (𝜑 → (𝜓 → 𝜂)) |
16 | 15 | dfvd2ir 39119 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ( wvd2 39110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-vd2 39111 |
This theorem is referenced by: e220 39179 e202 39181 e022 39183 e002 39185 e020 39187 e200 39189 e221 39191 e212 39193 e122 39195 e112 39196 e121 39198 e211 39199 e22 39213 suctrALT2VD 39385 en3lplem2VD 39393 19.21a3con13vVD 39401 tratrbVD 39411 |
Copyright terms: Public domain | W3C validator |