Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e23 Structured version   Visualization version   GIF version

Theorem e23 39299
Description: A virtual deduction elimination rule (see syl10 79). (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e23.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e23.2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
e23.3 (𝜒 → (𝜏𝜂))
Assertion
Ref Expression
e23 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )

Proof of Theorem e23
StepHypRef Expression
1 e23.1 . . 3 (   𝜑   ,   𝜓   ▶   𝜒   )
21vd23 39144 . 2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
3 e23.2 . 2 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜏   )
4 e23.3 . 2 (𝜒 → (𝜏𝜂))
52, 3, 4e33 39278 1 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 39110  (   wvd3 39120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056  df-vd2 39111  df-vd3 39123
This theorem is referenced by:  e23an  39300  suctrALT2VD  39385  rspsbc2VD  39404  tratrbVD  39411  imbi12VD  39423  imbi13VD  39424
  Copyright terms: Public domain W3C validator