Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2bi Structured version   Visualization version   GIF version

Theorem e2bi 39174
Description: Biconditional form of e2 39173. syl6ib 241 is e2bi 39174 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2bi.1 (   𝜑   ,   𝜓   ▶   𝜒   )
e2bi.2 (𝜒𝜃)
Assertion
Ref Expression
e2bi (   𝜑   ,   𝜓   ▶   𝜃   )

Proof of Theorem e2bi
StepHypRef Expression
1 e2bi.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 e2bi.2 . . 3 (𝜒𝜃)
32biimpi 206 . 2 (𝜒𝜃)
41, 3e2 39173 1 (   𝜑   ,   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wb 196  (   wvd2 39110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-vd2 39111
This theorem is referenced by:  snssiALTVD  39376  eqsbc3rVD  39389  en3lplem2VD  39393  onfrALTlem3VD  39437  onfrALTlem1VD  39440
  Copyright terms: Public domain W3C validator