MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 26053
Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (𝜑𝑁 ∈ ℕ)
ebtwntg.2 𝑃 = (Base‘(EEG‘𝑁))
ebtwntg.3 𝐼 = (Itv‘(EEG‘𝑁))
ebtwntg.x (𝜑𝑋𝑃)
ebtwntg.y (𝜑𝑌𝑃)
ebtwntg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
ebtwntg (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))

Proof of Theorem ebtwntg
Dummy variables 𝑥 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itvid 25532 . . . . . 6 Itv = Slot (Itv‘ndx)
2 fvexd 6356 . . . . . 6 (𝜑 → (EEG‘𝑁) ∈ V)
3 ebtwntg.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
4 eengstr 26051 . . . . . . . . 9 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
53, 4syl 17 . . . . . . . 8 (𝜑 → (EEG‘𝑁) Struct ⟨1, 17⟩)
6 isstruct 16064 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ ↔ ((1 ∈ ℕ ∧ 17 ∈ ℕ ∧ 1 ≤ 17) ∧ Fun ((EEG‘𝑁) ∖ {∅}) ∧ dom (EEG‘𝑁) ⊆ (1...17)))
76simp2bi 1140 . . . . . . . 8 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
85, 7syl 17 . . . . . . 7 (𝜑 → Fun ((EEG‘𝑁) ∖ {∅}))
9 structcnvcnv 16065 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
105, 9syl 17 . . . . . . . 8 (𝜑(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
1110funeqd 6063 . . . . . . 7 (𝜑 → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
128, 11mpbird 247 . . . . . 6 (𝜑 → Fun (EEG‘𝑁))
13 opex 5073 . . . . . . . . 9 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ V
1413prid1 4433 . . . . . . . 8 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}
15 elun2 3916 . . . . . . . 8 (⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
17 eengv 26050 . . . . . . . 8 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
183, 17syl 17 . . . . . . 7 (𝜑 → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1916, 18syl5eleqr 2838 . . . . . 6 (𝜑 → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ (EEG‘𝑁))
20 fvex 6354 . . . . . . . 8 (𝔼‘𝑁) ∈ V
2120, 20mpt2ex 7407 . . . . . . 7 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V
2221a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V)
231, 2, 12, 19, 22strfv2d 16099 . . . . 5 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) = (Itv‘(EEG‘𝑁)))
24 ebtwntg.3 . . . . 5 𝐼 = (Itv‘(EEG‘𝑁))
2523, 24syl6reqr 2805 . . . 4 (𝜑𝐼 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}))
26 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
27 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
2826, 27opeq12d 4553 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
2928breq2d 4808 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨𝑋, 𝑌⟩))
3029rabbidv 3321 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩} = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
31 ebtwntg.x . . . . . 6 (𝜑𝑋𝑃)
32 ebtwntg.2 . . . . . 6 𝑃 = (Base‘(EEG‘𝑁))
3331, 32syl6eleq 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘(EEG‘𝑁)))
34 eengbas 26052 . . . . . 6 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
353, 34syl 17 . . . . 5 (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
3633, 35eleqtrrd 2834 . . . 4 (𝜑𝑋 ∈ (𝔼‘𝑁))
37 ebtwntg.y . . . . . 6 (𝜑𝑌𝑃)
3837, 32syl6eleq 2841 . . . . 5 (𝜑𝑌 ∈ (Base‘(EEG‘𝑁)))
3938, 35eleqtrrd 2834 . . . 4 (𝜑𝑌 ∈ (𝔼‘𝑁))
4020rabex 4956 . . . . 5 {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V
4140a1i 11 . . . 4 (𝜑 → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V)
4225, 30, 36, 39, 41ovmpt2d 6945 . . 3 (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
4342eleq2d 2817 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩}))
44 ebtwntg.z . . . . 5 (𝜑𝑍𝑃)
4544, 32syl6eleq 2841 . . . 4 (𝜑𝑍 ∈ (Base‘(EEG‘𝑁)))
4645, 35eleqtrrd 2834 . . 3 (𝜑𝑍 ∈ (𝔼‘𝑁))
47 breq1 4799 . . . 4 (𝑧 = 𝑍 → (𝑧 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4847elrab3 3497 . . 3 (𝑍 ∈ (𝔼‘𝑁) → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4946, 48syl 17 . 2 (𝜑 → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
5043, 49bitr2d 269 1 (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3o 1071  w3a 1072   = wceq 1624  wcel 2131  {crab 3046  Vcvv 3332  cdif 3704  cun 3705  wss 3707  c0 4050  {csn 4313  {cpr 4315  cop 4319   class class class wbr 4796  ccnv 5257  dom cdm 5258  Fun wfun 6035  cfv 6041  (class class class)co 6805  cmpt2 6807  1c1 10121  cle 10259  cmin 10450  cn 11204  2c2 11254  7c7 11259  cdc 11677  ...cfz 12511  cexp 13046  Σcsu 14607   Struct cstr 16047  ndxcnx 16048  Basecbs 16051  distcds 16144  Itvcitv 25526  LineGclng 25527  𝔼cee 25959   Btwn cbtwn 25960  EEGceeng 26048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-seq 12988  df-sum 14608  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-ds 16158  df-itv 25528  df-lng 25529  df-eeng 26049
This theorem is referenced by:  elntg  26055  eengtrkg  26056  eengtrkge  26057
  Copyright terms: Public domain W3C validator