MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecdmn0 Structured version   Visualization version   GIF version

Theorem ecdmn0 8325
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecdmn0 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)

Proof of Theorem ecdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 n0 4307 . . 3 ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
3 ecexr 8283 . . . 4 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
43exlimiv 1922 . . 3 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
52, 4sylbi 218 . 2 ([𝐴]𝑅 ≠ ∅ → 𝐴 ∈ V)
6 vex 3495 . . . . 5 𝑥 ∈ V
7 elecg 8321 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
86, 7mpan 686 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
98exbidv 1913 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
102a1i 11 . . 3 (𝐴 ∈ V → ([𝐴]𝑅 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
11 eldmg 5760 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
129, 10, 113bitr4rd 313 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅))
131, 5, 12pm5.21nii 380 1 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wex 1771  wcel 2105  wne 3013  Vcvv 3492  c0 4288   class class class wbr 5057  dom cdm 5548  [cec 8276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ec 8280
This theorem is referenced by:  ereldm  8326  elqsn0  8355  ecelqsdm  8356  eceqoveq  8391  divsfval  16808  sylow1lem5  18656  vitalilem2  24137  vitalilem3  24138  dfdm6  35440  dmecd  35443  n0elqs  35464
  Copyright terms: Public domain W3C validator