Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsi Structured version   Visualization version   GIF version

Theorem ecelqsi 7751
 Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1 𝑅 ∈ V
Assertion
Ref Expression
ecelqsi (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2 𝑅 ∈ V
2 ecelqsg 7750 . 2 ((𝑅 ∈ V ∧ 𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
31, 2mpan 705 1 (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1987  Vcvv 3186  [cec 7688   / cqs 7689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-xp 5082  df-cnv 5084  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-ec 7692  df-qs 7696 This theorem is referenced by:  ecopqsi  7752  addsrpr  9843  mulsrpr  9844  0r  9848  1sr  9849  m1r  9850  addclsr  9851  mulclsr  9852  quseccl  17574  orbsta  17670  frgpeccl  18098  qustgphaus  21839  vitalilem2  23291  vitalilem3  23292  pstmfval  29733
 Copyright terms: Public domain W3C validator