MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecinxp Structured version   Visualization version   GIF version

Theorem ecinxp 7768
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 477 . . . . . . . 8 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → 𝐵𝐴)
21snssd 4314 . . . . . . 7 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
3 df-ss 3574 . . . . . . 7 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
42, 3sylib 208 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ({𝐵} ∩ 𝐴) = {𝐵})
54imaeq2d 5429 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵}))
65ineq1d 3796 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴))
7 imass2 5464 . . . . . . 7 ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
82, 7syl 17 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
9 simpl 473 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅𝐴) ⊆ 𝐴)
108, 9sstrd 3598 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴)
11 df-ss 3574 . . . . 5 ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
1210, 11sylib 208 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
136, 12eqtr2d 2661 . . 3 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴))
14 imainrect 5538 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)
1513, 14syl6eqr 2678 . 2 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}))
16 df-ec 7690 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
17 df-ec 7690 . 2 [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})
1815, 16, 173eqtr4g 2685 1 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  cin 3559  wss 3560  {csn 4153   × cxp 5077  cima 5082  [cec 7686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ec 7690
This theorem is referenced by:  qsinxp  7769  qusin  16120  pi1addval  22751  pi1grplem  22752
  Copyright terms: Public domain W3C validator