Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecoptocl Structured version   Visualization version   GIF version

Theorem ecoptocl 7782
 Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1 𝑆 = ((𝐵 × 𝐶) / 𝑅)
ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
ecoptocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
ecoptocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem ecoptocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elqsi 7745 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅)
2 eqid 2621 . . . . 5 (𝐵 × 𝐶) = (𝐵 × 𝐶)
3 eceq1 7727 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝑧 → [⟨𝑥, 𝑦⟩]𝑅 = [𝑧]𝑅)
43eqeq2d 2631 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝐴 = [𝑧]𝑅))
54imbi1d 331 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝑧 → ((𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓) ↔ (𝐴 = [𝑧]𝑅𝜓)))
6 ecoptocl.3 . . . . . 6 ((𝑥𝐵𝑦𝐶) → 𝜑)
7 ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
87eqcoms 2629 . . . . . 6 (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → (𝜑𝜓))
96, 8syl5ibcom 235 . . . . 5 ((𝑥𝐵𝑦𝐶) → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓))
102, 5, 9optocl 5156 . . . 4 (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅𝜓))
1110rexlimiv 3020 . . 3 (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅𝜓)
121, 11syl 17 . 2 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓)
13 ecoptocl.1 . 2 𝑆 = ((𝐵 × 𝐶) / 𝑅)
1412, 13eleq2s 2716 1 (𝐴𝑆𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908  ⟨cop 4154   × cxp 5072  [cec 7685   / cqs 7686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ec 7689  df-qs 7693 This theorem is referenced by:  2ecoptocl  7783  3ecoptocl  7784  0idsr  9862  1idsr  9863  00sr  9864  recexsrlem  9868  map2psrpr  9875
 Copyright terms: Public domain W3C validator