MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecovdi Structured version   Visualization version   GIF version

Theorem ecovdi 7717
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovdi.1 𝐷 = ((𝑆 × 𝑆) / )
ecovdi.2 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
ecovdi.3 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovdi.4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
ecovdi.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
ecovdi.6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
ecovdi.7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
ecovdi.8 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
ecovdi.9 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
ecovdi.10 𝐻 = 𝐾
ecovdi.11 𝐽 = 𝐿
Assertion
Ref Expression
ecovdi ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑤,𝐶,𝑣,𝑢   𝑥, + ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, · ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝐷,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecovdi
StepHypRef Expression
1 ecovdi.1 . 2 𝐷 = ((𝑆 × 𝑆) / )
2 oveq1 6531 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )))
3 oveq1 6531 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = (𝐴 · [⟨𝑧, 𝑤⟩] ))
4 oveq1 6531 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = (𝐴 · [⟨𝑣, 𝑢⟩] ))
53, 4oveq12d 6542 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
62, 5eqeq12d 2621 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
7 oveq1 6531 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = (𝐵 + [⟨𝑣, 𝑢⟩] ))
87oveq2d 6540 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )))
9 oveq2 6532 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · [⟨𝑧, 𝑤⟩] ) = (𝐴 · 𝐵))
109oveq1d 6539 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
118, 10eqeq12d 2621 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
12 oveq2 6532 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐵 + [⟨𝑣, 𝑢⟩] ) = (𝐵 + 𝐶))
1312oveq2d 6540 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + 𝐶)))
14 oveq2 6532 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · [⟨𝑣, 𝑢⟩] ) = (𝐴 · 𝐶))
1514oveq2d 6540 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1613, 15eqeq12d 2621 . 2 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))))
17 ecovdi.10 . . . 4 𝐻 = 𝐾
18 ecovdi.11 . . . 4 𝐽 = 𝐿
19 opeq12 4333 . . . . 5 ((𝐻 = 𝐾𝐽 = 𝐿) → ⟨𝐻, 𝐽⟩ = ⟨𝐾, 𝐿⟩)
2019eceq1d 7644 . . . 4 ((𝐻 = 𝐾𝐽 = 𝐿) → [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩] )
2117, 18, 20mp2an 703 . . 3 [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩]
22 ecovdi.2 . . . . . . 7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
2322oveq2d 6540 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
2423adantl 480 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
25 ecovdi.7 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
26 ecovdi.3 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2725, 26sylan2 489 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2824, 27eqtrd 2640 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
29283impb 1251 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
30 ecovdi.4 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
31 ecovdi.5 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
3230, 31oveqan12d 6543 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ))
33 ecovdi.8 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
34 ecovdi.9 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
35 ecovdi.6 . . . . . 6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3633, 34, 35syl2an 492 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3732, 36eqtrd 2640 . . . 4 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
38373impdi 1372 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
3921, 29, 383eqtr4a 2666 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )))
401, 6, 11, 16, 393ecoptocl 7700 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cop 4127   × cxp 5023  (class class class)co 6524  [cec 7601   / cqs 7602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-xp 5031  df-cnv 5033  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fv 5795  df-ov 6527  df-ec 7605  df-qs 7609
This theorem is referenced by:  distrsr  9765  axdistr  9832
  Copyright terms: Public domain W3C validator