Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecxrn Structured version   Visualization version   GIF version

Theorem ecxrn 35633
Description: The (𝑅𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
ecxrn (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧   𝑦,𝑉,𝑧

Proof of Theorem ecxrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elecxrn 35632 . . . 4 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧)))
2 3anass 1091 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
322exbii 1845 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝐴𝑅𝑦𝐴𝑆𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
41, 3syl6bb 289 . . 3 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧))))
5 elopab 5406 . . 3 (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝐴𝑅𝑦𝐴𝑆𝑧)))
64, 5syl6bbr 291 . 2 (𝐴𝑉 → (𝑥 ∈ [𝐴](𝑅𝑆) ↔ 𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)}))
76eqrdv 2819 1 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  cop 4566   class class class wbr 5058  {copab 5120  [cec 8281  cxrn 35446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-1st 7683  df-2nd 7684  df-ec 8285  df-xrn 35617
This theorem is referenced by:  br1cosscnvxrn  35708
  Copyright terms: Public domain W3C validator