MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0usgr Structured version   Visualization version   GIF version

Theorem edg0usgr 26072
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
edg0usgr ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph )

Proof of Theorem edg0usgr
StepHypRef Expression
1 edgval 25875 . . . 4 (𝐺𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺))
21eqeq1d 2623 . . 3 (𝐺𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
3 funrel 5874 . . . . . 6 (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺))
4 relrn0 5353 . . . . . . 7 (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
54bicomd 213 . . . . . 6 (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
63, 5syl 17 . . . . 5 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
7 simpr 477 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺𝑊)
8 simpl 473 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → (iEdg‘𝐺) = ∅)
97, 8usgr0e 26055 . . . . . 6 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺 ∈ USGraph )
109ex 450 . . . . 5 ((iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph ))
116, 10syl6bi 243 . . . 4 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph )))
1211com13 88 . . 3 (𝐺𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph )))
132, 12sylbid 230 . 2 (𝐺𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph )))
14133imp 1254 1 ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  c0 3897  ran crn 5085  Rel wrel 5089  Fun wfun 5851  cfv 5857  iEdgciedg 25809  Edgcedg 25873   USGraph cusgr 25971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fv 5865  df-edg 25874  df-usgr 25973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator