MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgnbusgreu Structured version   Visualization version   GIF version

Theorem edgnbusgreu 27143
Description: For each edge incident to a vertex there is exactly one neighbor of the vertex also incident to this edge in a simple graph. (Contributed by AV, 28-Oct-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
edgnbusgreu.e 𝐸 = (Edg‘𝐺)
edgnbusgreu.n 𝑁 = (𝐺 NeighbVtx 𝑀)
Assertion
Ref Expression
edgnbusgreu (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Distinct variable groups:   𝐶,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝑀   𝑛,𝑉
Allowed substitution hint:   𝑁(𝑛)

Proof of Theorem edgnbusgreu
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐺 ∈ USGraph)
2 edgnbusgreu.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
32eleq2i 2904 . . . . . . 7 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
43biimpi 218 . . . . . 6 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
54ad2antrl 726 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝐶 ∈ (Edg‘𝐺))
6 simprr 771 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → 𝑀𝐶)
7 usgredg2vtxeu 26997 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐶 ∈ (Edg‘𝐺) ∧ 𝑀𝐶) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
81, 5, 6, 7syl3anc 1367 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛})
9 df-reu 3145 . . . . 5 (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
10 prcom 4661 . . . . . . . . . . . . . . . 16 {𝑀, 𝑛} = {𝑛, 𝑀}
1110eqeq2i 2834 . . . . . . . . . . . . . . 15 (𝐶 = {𝑀, 𝑛} ↔ 𝐶 = {𝑛, 𝑀})
1211biimpi 218 . . . . . . . . . . . . . 14 (𝐶 = {𝑀, 𝑛} → 𝐶 = {𝑛, 𝑀})
1312eleq1d 2897 . . . . . . . . . . . . 13 (𝐶 = {𝑀, 𝑛} → (𝐶𝐸 ↔ {𝑛, 𝑀} ∈ 𝐸))
1413biimpcd 251 . . . . . . . . . . . 12 (𝐶𝐸 → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1514ad2antrl 726 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (𝐶 = {𝑀, 𝑛} → {𝑛, 𝑀} ∈ 𝐸))
1615adantld 493 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸))
1716imp 409 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → {𝑛, 𝑀} ∈ 𝐸)
18 simprr 771 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
1917, 18jca 514 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛})) → ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
20 simpl 485 . . . . . . . . . 10 (({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}) → {𝑛, 𝑀} ∈ 𝐸)
21 eqid 2821 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
222, 21usgrpredgv 26973 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝑀 ∈ (Vtx‘𝐺)))
2322simpld 497 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑀} ∈ 𝐸) → 𝑛 ∈ (Vtx‘𝐺))
241, 20, 23syl2an 597 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝑛 ∈ (Vtx‘𝐺))
25 simprr 771 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → 𝐶 = {𝑀, 𝑛})
2624, 25jca 514 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) ∧ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})) → (𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}))
2719, 26impbida 799 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2827eubidv 2668 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
2928biimpd 231 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛 ∈ (Vtx‘𝐺) ∧ 𝐶 = {𝑀, 𝑛}) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
309, 29syl5bi 244 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛 ∈ (Vtx‘𝐺)𝐶 = {𝑀, 𝑛} → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
318, 30mpd 15 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛}))
32 edgnbusgreu.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑀)
3332eleq2i 2904 . . . . . . 7 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑀))
342nbusgreledg 27129 . . . . . . 7 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑀) ↔ {𝑛, 𝑀} ∈ 𝐸))
3533, 34syl5bb 285 . . . . . 6 (𝐺 ∈ USGraph → (𝑛𝑁 ↔ {𝑛, 𝑀} ∈ 𝐸))
3635anbi1d 631 . . . . 5 (𝐺 ∈ USGraph → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3736ad2antrr 724 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ((𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3837eubidv 2668 . . 3 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → (∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}) ↔ ∃!𝑛({𝑛, 𝑀} ∈ 𝐸𝐶 = {𝑀, 𝑛})))
3931, 38mpbird 259 . 2 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
40 df-reu 3145 . 2 (∃!𝑛𝑁 𝐶 = {𝑀, 𝑛} ↔ ∃!𝑛(𝑛𝑁𝐶 = {𝑀, 𝑛}))
4139, 40sylibr 236 1 (((𝐺 ∈ USGraph ∧ 𝑀𝑉) ∧ (𝐶𝐸𝑀𝐶)) → ∃!𝑛𝑁 𝐶 = {𝑀, 𝑛})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ∃!weu 2649  ∃!wreu 3140  {cpr 4562  cfv 6349  (class class class)co 7150  Vtxcvtx 26775  Edgcedg 26826  USGraphcusgr 26928   NeighbVtx cnbgr 27108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685  df-edg 26827  df-upgr 26861  df-umgr 26862  df-uspgr 26929  df-usgr 26930  df-nbgr 27109
This theorem is referenced by:  nbusgrf1o0  27145
  Copyright terms: Public domain W3C validator