Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee001 Structured version   Visualization version   GIF version

Theorem ee001 39406
Description: e001 39405 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee001.1 𝜑
ee001.2 𝜓
ee001.3 (𝜒𝜃)
ee001.4 (𝜑 → (𝜓 → (𝜃𝜏)))
Assertion
Ref Expression
ee001 (𝜒𝜏)

Proof of Theorem ee001
StepHypRef Expression
1 ee001.1 . . 3 𝜑
21a1i 11 . 2 (𝜒𝜑)
3 ee001.2 . . 3 𝜓
43a1i 11 . 2 (𝜒𝜓)
5 ee001.3 . 2 (𝜒𝜃)
6 ee001.4 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
72, 4, 5, 6syl3c 66 1 (𝜒𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator