Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee121 Structured version   Visualization version   GIF version

Theorem ee121 38531
Description: e121 38701 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee121.1 (𝜑𝜓)
ee121.2 (𝜑 → (𝜒𝜃))
ee121.3 (𝜑𝜏)
ee121.4 (𝜓 → (𝜃 → (𝜏𝜂)))
Assertion
Ref Expression
ee121 (𝜑 → (𝜒𝜂))

Proof of Theorem ee121
StepHypRef Expression
1 ee121.1 . . 3 (𝜑𝜓)
21a1d 25 . 2 (𝜑 → (𝜒𝜓))
3 ee121.2 . 2 (𝜑 → (𝜒𝜃))
4 ee121.3 . . 3 (𝜑𝜏)
54a1d 25 . 2 (𝜑 → (𝜒𝜏))
6 ee121.4 . 2 (𝜓 → (𝜃 → (𝜏𝜂)))
72, 3, 5, 6ee222 38528 1 (𝜑 → (𝜒𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  tratrb  38566
  Copyright terms: Public domain W3C validator