Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eelT00 Structured version   Visualization version   GIF version

Theorem eelT00 38451
 Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eelT00.1 (⊤ → 𝜑)
eelT00.2 𝜓
eelT00.3 𝜒
eelT00.4 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
eelT00 𝜃

Proof of Theorem eelT00
StepHypRef Expression
1 eelT00.3 . 2 𝜒
2 eelT00.2 . . 3 𝜓
3 3anass 1040 . . . . 5 ((⊤ ∧ 𝜓𝜒) ↔ (⊤ ∧ (𝜓𝜒)))
4 truan 1498 . . . . 5 ((⊤ ∧ (𝜓𝜒)) ↔ (𝜓𝜒))
53, 4bitri 264 . . . 4 ((⊤ ∧ 𝜓𝜒) ↔ (𝜓𝜒))
6 eelT00.1 . . . . 5 (⊤ → 𝜑)
7 eelT00.4 . . . . 5 ((𝜑𝜓𝜒) → 𝜃)
86, 7syl3an1 1356 . . . 4 ((⊤ ∧ 𝜓𝜒) → 𝜃)
95, 8sylbir 225 . . 3 ((𝜓𝜒) → 𝜃)
102, 9mpan 705 . 2 (𝜒𝜃)
111, 10ax-mp 5 1 𝜃
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036  ⊤wtru 1481 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038  df-tru 1483 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator