Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eelTT1 Structured version   Visualization version   GIF version

Theorem eelTT1 38414
 Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eelTT1.1 (⊤ → 𝜑)
eelTT1.2 (⊤ → 𝜓)
eelTT1.3 (𝜒𝜃)
eelTT1.4 ((𝜑𝜓𝜃) → 𝜏)
Assertion
Ref Expression
eelTT1 (𝜒𝜏)

Proof of Theorem eelTT1
StepHypRef Expression
1 3anass 1040 . . 3 ((⊤ ∧ ⊤ ∧ 𝜒) ↔ (⊤ ∧ (⊤ ∧ 𝜒)))
2 anabs5 850 . . 3 ((⊤ ∧ (⊤ ∧ 𝜒)) ↔ (⊤ ∧ 𝜒))
3 truan 1498 . . 3 ((⊤ ∧ 𝜒) ↔ 𝜒)
41, 2, 33bitri 286 . 2 ((⊤ ∧ ⊤ ∧ 𝜒) ↔ 𝜒)
5 eelTT1.3 . . 3 (𝜒𝜃)
6 eelTT1.2 . . . 4 (⊤ → 𝜓)
7 eelTT1.1 . . . . 5 (⊤ → 𝜑)
8 eelTT1.4 . . . . 5 ((𝜑𝜓𝜃) → 𝜏)
97, 8syl3an1 1356 . . . 4 ((⊤ ∧ 𝜓𝜃) → 𝜏)
106, 9syl3an2 1357 . . 3 ((⊤ ∧ ⊤ ∧ 𝜃) → 𝜏)
115, 10syl3an3 1358 . 2 ((⊤ ∧ ⊤ ∧ 𝜒) → 𝜏)
124, 11sylbir 225 1 (𝜒𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036  ⊤wtru 1481 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038  df-tru 1483 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator