MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eengstr Structured version   Visualization version   GIF version

Theorem eengstr 26769
Description: The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Assertion
Ref Expression
eengstr (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)

Proof of Theorem eengstr
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengv 26768 . 2 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
2 1nn 11652 . . . 4 1 ∈ ℕ
3 basendx 16550 . . . 4 (Base‘ndx) = 1
4 2nn0 11917 . . . . 5 2 ∈ ℕ0
5 1nn0 11916 . . . . 5 1 ∈ ℕ0
6 1lt10 12240 . . . . 5 1 < 10
72, 4, 5, 6declti 12139 . . . 4 1 < 12
8 2nn 11713 . . . . 5 2 ∈ ℕ
95, 8decnncl 12121 . . . 4 12 ∈ ℕ
10 dsndx 16678 . . . 4 (dist‘ndx) = 12
112, 3, 7, 9, 10strle2 16596 . . 3 {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} Struct ⟨1, 12⟩
12 6nn 11729 . . . . 5 6 ∈ ℕ
135, 12decnncl 12121 . . . 4 16 ∈ ℕ
14 itvndx 26229 . . . 4 (Itv‘ndx) = 16
15 6nn0 11921 . . . . 5 6 ∈ ℕ0
16 7nn 11732 . . . . 5 7 ∈ ℕ
17 6lt7 11826 . . . . 5 6 < 7
185, 15, 16, 17declt 12129 . . . 4 16 < 17
195, 16decnncl 12121 . . . 4 17 ∈ ℕ
20 lngndx 26230 . . . 4 (LineG‘ndx) = 17
2113, 14, 18, 19, 20strle2 16596 . . 3 {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} Struct ⟨16, 17⟩
22 2lt6 11824 . . . 4 2 < 6
235, 4, 12, 22declt 12129 . . 3 12 < 16
2411, 21, 23strleun 16594 . 2 ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}) Struct ⟨1, 17⟩
251, 24eqbrtrdi 5108 1 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1082  wcel 2113  {crab 3145  cdif 3936  cun 3937  {csn 4570  {cpr 4572  cop 4576   class class class wbr 5069  cfv 6358  (class class class)co 7159  cmpo 7161  1c1 10541  cmin 10873  cn 11641  2c2 11695  6c6 11699  7c7 11700  cdc 12101  ...cfz 12895  cexp 13432  Σcsu 15045   Struct cstr 16482  ndxcnx 16483  Basecbs 16486  distcds 16577  Itvcitv 26225  LineGclng 26226  𝔼cee 26677   Btwn cbtwn 26678  EEGceeng 26766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-seq 13373  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-ds 16590  df-itv 26227  df-lng 26228  df-eeng 26767
This theorem is referenced by:  eengbas  26770  ebtwntg  26771  ecgrtg  26772  elntg  26773
  Copyright terms: Public domain W3C validator