MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   GIF version

Theorem ef0lem 15000
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 11907 . . . . . 6 0 = (ℤ‘0)
31, 2syl6eleqr 2842 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 11478 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 208 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 nnnn0 11483 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 473 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 eftval.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 14998 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
107, 9syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 oveq1 6812 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
12 0exp 13081 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1311, 12sylan9eq 2806 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1413oveq1d 6820 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
15 faccl 13256 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
16 nncn 11212 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
17 nnne0 11237 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
1816, 17div0d 10984 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
197, 15, 183syl 18 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2010, 14, 193eqtrd 2790 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
21 nnne0 11237 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
22 velsn 4329 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2322necon3bbii 2971 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2421, 23sylibr 224 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2524adantl 473 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2625iffalsed 4233 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
2720, 26eqtr4d 2789 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
28 fveq2 6344 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
29 oveq1 6812 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = (0↑0))
30 0exp0e1 13051 . . . . . . . . . 10 (0↑0) = 1
3129, 30syl6eq 2802 . . . . . . . . 9 (𝐴 = 0 → (𝐴↑0) = 1)
3231oveq1d 6820 . . . . . . . 8 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
33 0nn0 11491 . . . . . . . . 9 0 ∈ ℕ0
348eftval 14998 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
3533, 34ax-mp 5 . . . . . . . 8 (𝐹‘0) = ((𝐴↑0) / (!‘0))
36 fac0 13249 . . . . . . . . . 10 (!‘0) = 1
3736oveq2i 6816 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
38 1div1e1 10901 . . . . . . . . 9 (1 / 1) = 1
3937, 38eqtr2i 2775 . . . . . . . 8 1 = (1 / (!‘0))
4032, 35, 393eqtr4g 2811 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4128, 40sylan9eqr 2808 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
42 simpr 479 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4342, 22sylibr 224 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4443iftrued 4230 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4541, 44eqtr4d 2789 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4627, 45jaodan 861 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
475, 46syldan 488 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4833, 2eleqtri 2829 . . . 4 0 ∈ (ℤ‘0)
4948a1i 11 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
50 1cnd 10240 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
51 0z 11572 . . . . . 6 0 ∈ ℤ
52 fzsn 12568 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
5351, 52ax-mp 5 . . . . 5 (0...0) = {0}
5453eqimss2i 3793 . . . 4 {0} ⊆ (0...0)
5554a1i 11 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
5647, 49, 50, 55fsumcvg2 14649 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
5751, 40seq1i 13001 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
5856, 57breqtrd 4822 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1624  wcel 2131  wne 2924  wss 3707  ifcif 4222  {csn 4313   class class class wbr 4796  cmpt 4873  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121   + caddc 10123   / cdiv 10868  cn 11204  0cn0 11476  cz 11561  cuz 11871  ...cfz 12511  seqcseq 12987  cexp 13046  !cfa 13246  cli 14406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-seq 12988  df-exp 13047  df-fac 13247  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410
This theorem is referenced by:  ef0  15012
  Copyright terms: Public domain W3C validator