MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef0lem Structured version   Visualization version   GIF version

Theorem ef0lem 15434
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 12283 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2926 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 11902 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 220 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 nnnn0 11907 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
76adantl 484 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
8 eftval.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 15432 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
107, 9syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 oveq1 7165 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
12 0exp 13467 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1311, 12sylan9eq 2878 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1413oveq1d 7173 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
15 faccl 13646 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
16 nncn 11648 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
17 nnne0 11674 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
1816, 17div0d 11417 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
197, 15, 183syl 18 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2010, 14, 193eqtrd 2862 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
21 nnne0 11674 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
22 velsn 4585 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2322necon3bbii 3065 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2421, 23sylibr 236 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2524adantl 484 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2625iffalsed 4480 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
2720, 26eqtr4d 2861 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
28 fveq2 6672 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
29 oveq1 7165 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = (0↑0))
30 0exp0e1 13437 . . . . . . . . . 10 (0↑0) = 1
3129, 30syl6eq 2874 . . . . . . . . 9 (𝐴 = 0 → (𝐴↑0) = 1)
3231oveq1d 7173 . . . . . . . 8 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
33 0nn0 11915 . . . . . . . . 9 0 ∈ ℕ0
348eftval 15432 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
3533, 34ax-mp 5 . . . . . . . 8 (𝐹‘0) = ((𝐴↑0) / (!‘0))
36 fac0 13639 . . . . . . . . . 10 (!‘0) = 1
3736oveq2i 7169 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
38 1div1e1 11332 . . . . . . . . 9 (1 / 1) = 1
3937, 38eqtr2i 2847 . . . . . . . 8 1 = (1 / (!‘0))
4032, 35, 393eqtr4g 2883 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4128, 40sylan9eqr 2880 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
42 simpr 487 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4342, 22sylibr 236 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4443iftrued 4477 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4541, 44eqtr4d 2861 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4627, 45jaodan 954 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
475, 46syldan 593 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
4833, 2eleqtri 2913 . . . 4 0 ∈ (ℤ‘0)
4948a1i 11 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
50 1cnd 10638 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
51 fz0sn 13010 . . . . 5 (0...0) = {0}
5251eqimss2i 4028 . . . 4 {0} ⊆ (0...0)
5352a1i 11 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
5447, 49, 50, 53fsumcvg2 15086 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
55 0z 11995 . . 3 0 ∈ ℤ
5655, 40seq1i 13386 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
5754, 56breqtrd 5094 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wss 3938  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542   / cdiv 11299  cn 11640  0cn0 11900  cuz 12246  ...cfz 12895  seqcseq 13372  cexp 13432  !cfa 13636  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-fac 13637  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847
This theorem is referenced by:  ef0  15446
  Copyright terms: Public domain W3C validator