MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   GIF version

Theorem efabl 25136
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efabl (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efabl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . 2 (Base‘(ℂflds 𝑋)) = (Base‘(ℂflds 𝑋))
2 eqid 2823 . 2 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2823 . 2 (+g‘(ℂflds 𝑋)) = (+g‘(ℂflds 𝑋))
4 eqid 2823 . 2 (+g𝐺) = (+g𝐺)
5 simp1 1132 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝜑)
6 simp2 1133 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥 ∈ (Base‘(ℂflds 𝑋)))
7 efabl.4 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
8 eqid 2823 . . . . . . 7 (ℂflds 𝑋) = (ℂflds 𝑋)
98subgbas 18285 . . . . . 6 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂflds 𝑋)))
107, 9syl 17 . . . . 5 (𝜑𝑋 = (Base‘(ℂflds 𝑋)))
11103ad2ant1 1129 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑋 = (Base‘(ℂflds 𝑋)))
126, 11eleqtrrd 2918 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥𝑋)
13 simp3 1134 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦 ∈ (Base‘(ℂflds 𝑋)))
1413, 11eleqtrrd 2918 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦𝑋)
15 efabl.3 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1615, 7jca 514 . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)))
17 efabl.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1817efgh 25127 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1916, 18syl3an1 1159 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
20 cnfldadd 20552 . . . . . . . . 9 + = (+g‘ℂfld)
218, 20ressplusg 16614 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → + = (+g‘(ℂflds 𝑋)))
227, 21syl 17 . . . . . . 7 (𝜑 → + = (+g‘(ℂflds 𝑋)))
23223ad2ant1 1129 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑋) → + = (+g‘(ℂflds 𝑋)))
2423oveqd 7175 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds 𝑋))𝑦))
2524fveq2d 6676 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)))
26 mptexg 6986 . . . . . . . . 9 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
2717, 26eqeltrid 2919 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝐹 ∈ V)
28 rnexg 7616 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
297, 27, 283syl 18 . . . . . . 7 (𝜑 → ran 𝐹 ∈ V)
30 efabl.2 . . . . . . . 8 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
31 eqid 2823 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
32 cnfldmul 20553 . . . . . . . . 9 · = (.r‘ℂfld)
3331, 32mgpplusg 19245 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
3430, 33ressplusg 16614 . . . . . . 7 (ran 𝐹 ∈ V → · = (+g𝐺))
3529, 34syl 17 . . . . . 6 (𝜑 → · = (+g𝐺))
36353ad2ant1 1129 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → · = (+g𝐺))
3736oveqd 7175 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
3819, 25, 373eqtr3d 2866 . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
395, 12, 14, 38syl3anc 1367 . 2 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
40 fvex 6685 . . . . 5 (exp‘(𝐴 · 𝑥)) ∈ V
4140, 17fnmpti 6493 . . . 4 𝐹 Fn 𝑋
42 dffn4 6598 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
4341, 42mpbi 232 . . 3 𝐹:𝑋onto→ran 𝐹
44 eqidd 2824 . . . 4 (𝜑𝐹 = 𝐹)
45 eff 15437 . . . . . . . 8 exp:ℂ⟶ℂ
4645a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
4715adantr 483 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
48 cnfldbas 20551 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
4948subgss 18282 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
507, 49syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
5150sselda 3969 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
5247, 51mulcld 10663 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
5346, 52ffvelrnd 6854 . . . . . 6 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5453ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5517rnmptss 6888 . . . . 5 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
5631, 48mgpbas 19247 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
5730, 56ressbas2 16557 . . . . 5 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
5854, 55, 573syl 18 . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐺))
5944, 10, 58foeq123d 6611 . . 3 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺)))
6043, 59mpbii 235 . 2 (𝜑𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺))
61 cnring 20569 . . . 4 fld ∈ Ring
62 ringabl 19332 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Abel)
6361, 62ax-mp 5 . . 3 fld ∈ Abel
648subgabl 18958 . . 3 ((ℂfld ∈ Abel ∧ 𝑋 ∈ (SubGrp‘ℂfld)) → (ℂflds 𝑋) ∈ Abel)
6563, 7, 64sylancr 589 . 2 (𝜑 → (ℂflds 𝑋) ∈ Abel)
661, 2, 3, 4, 39, 60, 65ghmabl 18955 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  cc 10537   + caddc 10542   · cmul 10544  expce 15417  Basecbs 16485  s cress 16486  +gcplusg 16567  SubGrpcsubg 18275  Abelcabl 18909  mulGrpcmgp 19241  Ringcrg 19299  fldccnfld 20547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-cnfld 20548
This theorem is referenced by:  efsubm  25137  circgrp  25138
  Copyright terms: Public domain W3C validator