MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   GIF version

Theorem efabl 24217
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efabl (𝜑𝐺 ∈ Abel)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efabl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (Base‘(ℂflds 𝑋)) = (Base‘(ℂflds 𝑋))
2 eqid 2621 . 2 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2621 . 2 (+g‘(ℂflds 𝑋)) = (+g‘(ℂflds 𝑋))
4 eqid 2621 . 2 (+g𝐺) = (+g𝐺)
5 simp1 1059 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝜑)
6 simp2 1060 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥 ∈ (Base‘(ℂflds 𝑋)))
7 efabl.4 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
8 eqid 2621 . . . . . . 7 (ℂflds 𝑋) = (ℂflds 𝑋)
98subgbas 17530 . . . . . 6 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 = (Base‘(ℂflds 𝑋)))
107, 9syl 17 . . . . 5 (𝜑𝑋 = (Base‘(ℂflds 𝑋)))
11103ad2ant1 1080 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑋 = (Base‘(ℂflds 𝑋)))
126, 11eleqtrrd 2701 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑥𝑋)
13 simp3 1061 . . . 4 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦 ∈ (Base‘(ℂflds 𝑋)))
1413, 11eleqtrrd 2701 . . 3 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → 𝑦𝑋)
15 efabl.3 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1615, 7jca 554 . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)))
17 efabl.1 . . . . . 6 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1817efgh 24208 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1916, 18syl3an1 1356 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
20 cnfldadd 19683 . . . . . . . . 9 + = (+g‘ℂfld)
218, 20ressplusg 15925 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → + = (+g‘(ℂflds 𝑋)))
227, 21syl 17 . . . . . . 7 (𝜑 → + = (+g‘(ℂflds 𝑋)))
23223ad2ant1 1080 . . . . . 6 ((𝜑𝑥𝑋𝑦𝑋) → + = (+g‘(ℂflds 𝑋)))
2423oveqd 6627 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds 𝑋))𝑦))
2524fveq2d 6157 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)))
26 mptexg 6444 . . . . . . . . 9 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
2717, 26syl5eqel 2702 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝐹 ∈ V)
28 rnexg 7052 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
297, 27, 283syl 18 . . . . . . 7 (𝜑 → ran 𝐹 ∈ V)
30 efabl.2 . . . . . . . 8 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
31 eqid 2621 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
32 cnfldmul 19684 . . . . . . . . 9 · = (.r‘ℂfld)
3331, 32mgpplusg 18425 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
3430, 33ressplusg 15925 . . . . . . 7 (ran 𝐹 ∈ V → · = (+g𝐺))
3529, 34syl 17 . . . . . 6 (𝜑 → · = (+g𝐺))
36353ad2ant1 1080 . . . . 5 ((𝜑𝑥𝑋𝑦𝑋) → · = (+g𝐺))
3736oveqd 6627 . . . 4 ((𝜑𝑥𝑋𝑦𝑋) → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
3819, 25, 373eqtr3d 2663 . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
395, 12, 14, 38syl3anc 1323 . 2 ((𝜑𝑥 ∈ (Base‘(ℂflds 𝑋)) ∧ 𝑦 ∈ (Base‘(ℂflds 𝑋))) → (𝐹‘(𝑥(+g‘(ℂflds 𝑋))𝑦)) = ((𝐹𝑥)(+g𝐺)(𝐹𝑦)))
40 fvex 6163 . . . . 5 (exp‘(𝐴 · 𝑥)) ∈ V
4140, 17fnmpti 5984 . . . 4 𝐹 Fn 𝑋
42 dffn4 6083 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
4341, 42mpbi 220 . . 3 𝐹:𝑋onto→ran 𝐹
44 eqidd 2622 . . . 4 (𝜑𝐹 = 𝐹)
45 eff 14748 . . . . . . . 8 exp:ℂ⟶ℂ
4645a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
4715adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
48 cnfldbas 19682 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
4948subgss 17527 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
507, 49syl 17 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
5150sselda 3587 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
5247, 51mulcld 10012 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
5346, 52ffvelrnd 6321 . . . . . 6 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5453ralrimiva 2961 . . . . 5 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
5517rnmptss 6353 . . . . 5 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
5631, 48mgpbas 18427 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
5730, 56ressbas2 15863 . . . . 5 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
5854, 55, 573syl 18 . . . 4 (𝜑 → ran 𝐹 = (Base‘𝐺))
5944, 10, 58foeq123d 6094 . . 3 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺)))
6043, 59mpbii 223 . 2 (𝜑𝐹:(Base‘(ℂflds 𝑋))–onto→(Base‘𝐺))
61 cnring 19700 . . . 4 fld ∈ Ring
62 ringabl 18512 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ Abel)
6361, 62ax-mp 5 . . 3 fld ∈ Abel
648subgabl 18173 . . 3 ((ℂfld ∈ Abel ∧ 𝑋 ∈ (SubGrp‘ℂfld)) → (ℂflds 𝑋) ∈ Abel)
6563, 7, 64sylancr 694 . 2 (𝜑 → (ℂflds 𝑋) ∈ Abel)
661, 2, 3, 4, 39, 60, 65ghmabl 18170 1 (𝜑𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  wss 3559  cmpt 4678  ran crn 5080   Fn wfn 5847  wf 5848  ontowfo 5850  cfv 5852  (class class class)co 6610  cc 9886   + caddc 9891   · cmul 9893  expce 14728  Basecbs 15792  s cress 15793  +gcplusg 15873  SubGrpcsubg 17520  Abelcabl 18126  mulGrpcmgp 18421  Ringcrg 18479  fldccnfld 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-subg 17523  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-cnfld 19679
This theorem is referenced by:  efsubm  24218  circgrp  24219
  Copyright terms: Public domain W3C validator