MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Structured version   Visualization version   GIF version

Theorem efcj 14747
Description: Exponential function of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))

Proof of Theorem efcj
Dummy variables 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 13779 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 eqid 2621 . . . 4 (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))
32efcvg 14740 . . 3 ((∗‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
41, 3syl 17 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
5 nn0uz 11666 . . 3 0 = (ℤ‘0)
6 eqid 2621 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76efcvg 14740 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
8 seqex 12743 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V
98a1i 11 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V)
10 0zd 11333 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℤ)
116eftval 14732 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1211adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
13 eftcl 14729 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1412, 13eqeltrd 2698 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
155, 10, 14serf 12769 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
1615ffvelrnda 6315 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗) ∈ ℂ)
17 addcl 9962 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
1817adantl 482 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
19 simpl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
20 elfznn0 12374 . . . . . 6 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2119, 20, 14syl2an 494 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
22 simpr 477 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2322, 5syl6eleq 2708 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
24 cjadd 13815 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
2524adantl 482 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
26 expcl 12818 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
27 faccl 13010 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2827adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2928nncnd 10980 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
3028nnne0d 11009 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
3126, 29, 30cjdivd 13897 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))))
32 cjexp 13824 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3328nnred 10979 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
3433cjred 13900 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(!‘𝑘)) = (!‘𝑘))
3532, 34oveq12d 6622 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3631, 35eqtrd 2655 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3712fveq2d 6152 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = (∗‘((𝐴𝑘) / (!‘𝑘))))
382eftval 14732 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3938adantl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
4036, 37, 393eqtr4d 2665 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4119, 20, 40syl2an 494 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4218, 21, 23, 25, 41seqhomo 12788 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗))
4342eqcomd 2627 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗) = (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)))
445, 7, 9, 10, 16, 43climcj 14269 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴)))
45 climuni 14217 . 2 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
464, 44, 45syl2anc 692 1 (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880   + caddc 9883   / cdiv 10628  cn 10964  0cn0 11236  cuz 11631  ...cfz 12268  seqcseq 12741  cexp 12800  !cfa 13000  ccj 13770  cli 14149  expce 14717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-fac 13001  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723
This theorem is referenced by:  resinval  14790  recosval  14791  logcj  24256  cosargd  24258
  Copyright terms: Public domain W3C validator