MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Structured version   Visualization version   GIF version

Theorem efgi 18839
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))

Proof of Theorem efgi
Dummy variables 𝑎 𝑏 𝑖 𝑟 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . . . . . . . 11 (𝑢 = 𝐴 → (♯‘𝑢) = (♯‘𝐴))
21oveq2d 7166 . . . . . . . . . 10 (𝑢 = 𝐴 → (0...(♯‘𝑢)) = (0...(♯‘𝐴)))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝐴𝑢 = 𝐴)
4 oveq1 7157 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
53, 4breq12d 5071 . . . . . . . . . . 11 (𝑢 = 𝐴 → (𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
652ralbidv 3199 . . . . . . . . . 10 (𝑢 = 𝐴 → (∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
72, 6raleqbidv 3401 . . . . . . . . 9 (𝑢 = 𝐴 → (∀𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
87rspcv 3617 . . . . . . . 8 (𝐴𝑊 → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
9 oteq1 4805 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
10 oteq2 4806 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
119, 10eqtrd 2856 . . . . . . . . . . . 12 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
1211oveq2d 7166 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1312breq2d 5070 . . . . . . . . . 10 (𝑖 = 𝑁 → (𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
14132ralbidv 3199 . . . . . . . . 9 (𝑖 = 𝑁 → (∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1514rspcv 3617 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐴)) → (∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
168, 15sylan9 510 . . . . . . 7 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
17 opeq1 4796 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, 𝑏⟩ = ⟨𝐽, 𝑏⟩)
18 opeq1 4796 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐽, (1o𝑏)⟩)
1917, 18s2eqd 14219 . . . . . . . . . . 11 (𝑎 = 𝐽 → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩)
2019oteq3d 4810 . . . . . . . . . 10 (𝑎 = 𝐽 → ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩)
2120oveq2d 7166 . . . . . . . . 9 (𝑎 = 𝐽 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩))
2221breq2d 5070 . . . . . . . 8 (𝑎 = 𝐽 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩)))
23 opeq2 4797 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, 𝑏⟩ = ⟨𝐽, 𝐾⟩)
24 difeq2 4092 . . . . . . . . . . . . . 14 (𝑏 = 𝐾 → (1o𝑏) = (1o𝐾))
2524opeq2d 4803 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, (1o𝑏)⟩ = ⟨𝐽, (1o𝐾)⟩)
2623, 25s2eqd 14219 . . . . . . . . . . . 12 (𝑏 = 𝐾 → ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩)
2726oteq3d 4810 . . . . . . . . . . 11 (𝑏 = 𝐾 → ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)
2827oveq2d 7166 . . . . . . . . . 10 (𝑏 = 𝐾 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))
2928breq2d 5070 . . . . . . . . 9 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)))
30 df-br 5059 . . . . . . . . 9 (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟)
3129, 30syl6bb 289 . . . . . . . 8 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3222, 31rspc2v 3632 . . . . . . 7 ((𝐽𝐼𝐾 ∈ 2o) → (∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3316, 32sylan9 510 . . . . . 6 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3433adantld 493 . . . . 5 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3534alrimiv 1924 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
36 opex 5348 . . . . 5 𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ V
3736elintab 4879 . . . 4 (⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3835, 37sylibr 236 . . 3 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
39 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
40 efgval.r . . . 4 = ( ~FG𝐼)
4139, 40efgval 18837 . . 3 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4238, 41eleqtrrdi 2924 . 2 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ )
43 df-br 5059 . 2 (𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ )
4442, 43sylibr 236 1 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1531   = wceq 1533  wcel 2110  {cab 2799  wral 3138  cdif 3932  cop 4566  cotp 4568   cint 4868   class class class wbr 5058   I cid 5453   × cxp 5547  cfv 6349  (class class class)co 7150  1oc1o 8089  2oc2o 8090   Er wer 8280  0cc0 10531  ...cfz 12886  chash 13684  Word cword 13855   splice csplice 14105  ⟨“cs2 14197   ~FG cefg 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-s2 14204  df-efg 18829
This theorem is referenced by:  efgi0  18840  efgi1  18841
  Copyright terms: Public domain W3C validator