MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 18840
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4805 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐴, (1o𝑏)⟩)
2 difeq2 4095 . . 3 (𝑏 = 𝐵 → (1o𝑏) = (1o𝐵))
32opeq2d 4812 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1o𝑏)⟩ = ⟨𝐴, (1o𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 opeq1 4805 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1o𝑧)⟩ = ⟨𝑎, (1o𝑧)⟩)
6 difeq2 4095 . . . . 5 (𝑧 = 𝑏 → (1o𝑧) = (1o𝑏))
76opeq2d 4812 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1o𝑧)⟩ = ⟨𝑎, (1o𝑏)⟩)
85, 7cbvmpov 7251 . . 3 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
94, 8eqtri 2846 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2o ↦ ⟨𝑎, (1o𝑏)⟩)
10 opex 5358 . 2 𝐴, (1o𝐵)⟩ ∈ V
111, 3, 9, 10ovmpo 7312 1 ((𝐴𝐼𝐵 ∈ 2o) → (𝐴𝑀𝐵) = ⟨𝐴, (1o𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3935  cop 4575  (class class class)co 7158  cmpo 7160  1oc1o 8097  2oc2o 8098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163
This theorem is referenced by:  efgmnvl  18842  efgval2  18852  vrgpinv  18897  frgpuptinv  18899  frgpuplem  18900  frgpnabllem1  18995
  Copyright terms: Public domain W3C validator