MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgred2 Structured version   Visualization version   GIF version

Theorem efgred2 18082
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgred2 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgred2
Dummy variables 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . 8 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . 8 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 18068 . . . . . . 7 𝑆:dom 𝑆onto𝑊
8 fof 6074 . . . . . . 7 (𝑆:dom 𝑆onto𝑊𝑆:dom 𝑆𝑊)
97, 8ax-mp 5 . . . . . 6 𝑆:dom 𝑆𝑊
109ffvelrni 6315 . . . . 5 (𝐵 ∈ dom 𝑆 → (𝑆𝐵) ∈ 𝑊)
1110ad2antlr 762 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐵) ∈ 𝑊)
121, 2, 3, 4, 5, 6efgredeu 18081 . . . 4 ((𝑆𝐵) ∈ 𝑊 → ∃!𝑑𝐷 𝑑 (𝑆𝐵))
13 reurmo 3155 . . . 4 (∃!𝑑𝐷 𝑑 (𝑆𝐵) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
1411, 12, 133syl 18 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → ∃*𝑑𝐷 𝑑 (𝑆𝐵))
151, 2, 3, 4, 5, 6efgsdm 18059 . . . . 5 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘𝐴))(𝐴𝑖) ∈ ran (𝑇‘(𝐴‘(𝑖 − 1)))))
1615simp2bi 1075 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
1716ad2antrr 761 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) ∈ 𝐷)
181, 2efger 18047 . . . . 5 Er 𝑊
1918a1i 11 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → Er 𝑊)
201, 2, 3, 4, 5, 6efgsrel 18063 . . . . 5 (𝐴 ∈ dom 𝑆 → (𝐴‘0) (𝑆𝐴))
2120ad2antrr 761 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐴))
22 simpr 477 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝑆𝐴) (𝑆𝐵))
2319, 21, 22ertrd 7704 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) (𝑆𝐵))
241, 2, 3, 4, 5, 6efgsdm 18059 . . . . 5 (𝐵 ∈ dom 𝑆 ↔ (𝐵 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐵‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘𝐵))(𝐵𝑖) ∈ ran (𝑇‘(𝐵‘(𝑖 − 1)))))
2524simp2bi 1075 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) ∈ 𝐷)
2625ad2antlr 762 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) ∈ 𝐷)
271, 2, 3, 4, 5, 6efgsrel 18063 . . . 4 (𝐵 ∈ dom 𝑆 → (𝐵‘0) (𝑆𝐵))
2827ad2antlr 762 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐵‘0) (𝑆𝐵))
29 breq1 4621 . . . 4 (𝑑 = (𝐴‘0) → (𝑑 (𝑆𝐵) ↔ (𝐴‘0) (𝑆𝐵)))
30 breq1 4621 . . . 4 (𝑑 = (𝐵‘0) → (𝑑 (𝑆𝐵) ↔ (𝐵‘0) (𝑆𝐵)))
3129, 30rmoi 3516 . . 3 ((∃*𝑑𝐷 𝑑 (𝑆𝐵) ∧ ((𝐴‘0) ∈ 𝐷 ∧ (𝐴‘0) (𝑆𝐵)) ∧ ((𝐵‘0) ∈ 𝐷 ∧ (𝐵‘0) (𝑆𝐵))) → (𝐴‘0) = (𝐵‘0))
3214, 17, 23, 26, 28, 31syl122anc 1332 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝑆𝐴) (𝑆𝐵)) → (𝐴‘0) = (𝐵‘0))
3318a1i 11 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → Er 𝑊)
3420ad2antrr 761 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐴))
35 simpr 477 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
3627ad2antlr 762 . . . 4 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐵‘0) (𝑆𝐵))
3735, 36eqbrtrd 4640 . . 3 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) (𝑆𝐵))
3833, 34, 37ertr3d 7706 . 2 (((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) ∧ (𝐴‘0) = (𝐵‘0)) → (𝑆𝐴) (𝑆𝐵))
3932, 38impbida 876 1 ((𝐴 ∈ dom 𝑆𝐵 ∈ dom 𝑆) → ((𝑆𝐴) (𝑆𝐵) ↔ (𝐴‘0) = (𝐵‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  ∃!wreu 2914  ∃*wrmo 2915  {crab 2916  cdif 3557  c0 3896  {csn 4153  cop 4159  cotp 4161   ciun 4490   class class class wbr 4618  cmpt 4678   I cid 4989   × cxp 5077  dom cdm 5079  ran crn 5080  wf 5846  ontowfo 5848  cfv 5850  (class class class)co 6605  cmpt2 6607  1𝑜c1o 7499  2𝑜c2o 7500   Er wer 7685  0cc0 9881  1c1 9882  cmin 10211  ...cfz 12265  ..^cfzo 12403  #chash 13054  Word cword 13225   splice csplice 13230  ⟨“cs2 13518   ~FG cefg 18035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-ec 7690  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-concat 13235  df-s1 13236  df-substr 13237  df-splice 13238  df-s2 13525  df-efg 18038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator