MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredeu Structured version   Visualization version   GIF version

Theorem efgredeu 18872
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgredeu (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Distinct variable groups:   𝐴,𝑑   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑑,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑊   ,𝑑,𝑚,𝑡,𝑥,𝑦,𝑧   𝑆,𝑑   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑑,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛,𝑑)   𝐼(𝑘,𝑑)   𝑀(𝑦,𝑧,𝑘,𝑑)

Proof of Theorem efgredeu
Dummy variables 𝑎 𝑏 𝑐 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsfo 18859 . . . 4 𝑆:dom 𝑆onto𝑊
8 foelrn 6866 . . . 4 ((𝑆:dom 𝑆onto𝑊𝐴𝑊) → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
97, 8mpan 688 . . 3 (𝐴𝑊 → ∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎))
101, 2, 3, 4, 5, 6efgsdm 18850 . . . . . . 7 (𝑎 ∈ dom 𝑆 ↔ (𝑎 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑎‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑎))(𝑎𝑖) ∈ ran (𝑇‘(𝑎‘(𝑖 − 1)))))
1110simp2bi 1142 . . . . . 6 (𝑎 ∈ dom 𝑆 → (𝑎‘0) ∈ 𝐷)
121, 2, 3, 4, 5, 6efgsrel 18854 . . . . . . 7 (𝑎 ∈ dom 𝑆 → (𝑎‘0) (𝑆𝑎))
1312adantl 484 . . . . . 6 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝑎‘0) (𝑆𝑎))
14 breq1 5061 . . . . . . 7 (𝑑 = (𝑎‘0) → (𝑑 (𝑆𝑎) ↔ (𝑎‘0) (𝑆𝑎)))
1514rspcev 3622 . . . . . 6 (((𝑎‘0) ∈ 𝐷 ∧ (𝑎‘0) (𝑆𝑎)) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
1611, 13, 15syl2an2 684 . . . . 5 ((𝐴𝑊𝑎 ∈ dom 𝑆) → ∃𝑑𝐷 𝑑 (𝑆𝑎))
17 breq2 5062 . . . . . 6 (𝐴 = (𝑆𝑎) → (𝑑 𝐴𝑑 (𝑆𝑎)))
1817rexbidv 3297 . . . . 5 (𝐴 = (𝑆𝑎) → (∃𝑑𝐷 𝑑 𝐴 ↔ ∃𝑑𝐷 𝑑 (𝑆𝑎)))
1916, 18syl5ibrcom 249 . . . 4 ((𝐴𝑊𝑎 ∈ dom 𝑆) → (𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
2019rexlimdva 3284 . . 3 (𝐴𝑊 → (∃𝑎 ∈ dom 𝑆 𝐴 = (𝑆𝑎) → ∃𝑑𝐷 𝑑 𝐴))
219, 20mpd 15 . 2 (𝐴𝑊 → ∃𝑑𝐷 𝑑 𝐴)
221, 2efger 18838 . . . . . . 7 Er 𝑊
2322a1i 11 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → Er 𝑊)
24 simprl 769 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝐴)
25 simprr 771 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑐 𝐴)
2623, 24, 25ertr4d 8302 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 𝑐)
271, 2, 3, 4, 5, 6efgrelex 18871 . . . . . 6 (𝑑 𝑐 → ∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0))
28 fofn 6586 . . . . . . . . . . . . . 14 (𝑆:dom 𝑆onto𝑊𝑆 Fn dom 𝑆)
29 fniniseg 6824 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑)))
307, 28, 29mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑆 “ {𝑑}) ↔ (𝑎 ∈ dom 𝑆 ∧ (𝑆𝑎) = 𝑑))
3130simplbi 500 . . . . . . . . . . . 12 (𝑎 ∈ (𝑆 “ {𝑑}) → 𝑎 ∈ dom 𝑆)
3231ad2antrl 726 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑎 ∈ dom 𝑆)
331, 2, 3, 4, 5, 6efgsval 18851 . . . . . . . . . . 11 (𝑎 ∈ dom 𝑆 → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3432, 33syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = (𝑎‘((♯‘𝑎) − 1)))
3530simprbi 499 . . . . . . . . . . 11 (𝑎 ∈ (𝑆 “ {𝑑}) → (𝑆𝑎) = 𝑑)
3635ad2antrl 726 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) = 𝑑)
37 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑑𝐷𝑐𝐷))
3837simpld 497 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑑𝐷)
3936, 38eqeltrd 2913 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑎) ∈ 𝐷)
401, 2, 3, 4, 5, 6efgs1b 18856 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom 𝑆 → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4132, 40syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑎) ∈ 𝐷 ↔ (♯‘𝑎) = 1))
4239, 41mpbid 234 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑎) = 1)
4342oveq1d 7165 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = (1 − 1))
44 1m1e0 11703 . . . . . . . . . . . 12 (1 − 1) = 0
4543, 44syl6eq 2872 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑎) − 1) = 0)
4645fveq2d 6668 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘((♯‘𝑎) − 1)) = (𝑎‘0))
4734, 36, 463eqtr3rd 2865 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑎‘0) = 𝑑)
48 fniniseg 6824 . . . . . . . . . . . . . 14 (𝑆 Fn dom 𝑆 → (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐)))
497, 28, 48mp2b 10 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑆 “ {𝑐}) ↔ (𝑏 ∈ dom 𝑆 ∧ (𝑆𝑏) = 𝑐))
5049simplbi 500 . . . . . . . . . . . 12 (𝑏 ∈ (𝑆 “ {𝑐}) → 𝑏 ∈ dom 𝑆)
5150ad2antll 727 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑏 ∈ dom 𝑆)
521, 2, 3, 4, 5, 6efgsval 18851 . . . . . . . . . . 11 (𝑏 ∈ dom 𝑆 → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5351, 52syl 17 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = (𝑏‘((♯‘𝑏) − 1)))
5449simprbi 499 . . . . . . . . . . 11 (𝑏 ∈ (𝑆 “ {𝑐}) → (𝑆𝑏) = 𝑐)
5554ad2antll 727 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) = 𝑐)
5637simprd 498 . . . . . . . . . . . . . . 15 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → 𝑐𝐷)
5755, 56eqeltrd 2913 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑆𝑏) ∈ 𝐷)
581, 2, 3, 4, 5, 6efgs1b 18856 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑆 → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
5951, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑆𝑏) ∈ 𝐷 ↔ (♯‘𝑏) = 1))
6057, 59mpbid 234 . . . . . . . . . . . . 13 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (♯‘𝑏) = 1)
6160oveq1d 7165 . . . . . . . . . . . 12 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = (1 − 1))
6261, 44syl6eq 2872 . . . . . . . . . . 11 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((♯‘𝑏) − 1) = 0)
6362fveq2d 6668 . . . . . . . . . 10 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘((♯‘𝑏) − 1)) = (𝑏‘0))
6453, 55, 633eqtr3rd 2865 . . . . . . . . 9 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → (𝑏‘0) = 𝑐)
6547, 64eqeq12d 2837 . . . . . . . 8 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) ↔ 𝑑 = 𝑐))
6665biimpd 231 . . . . . . 7 ((((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) ∧ (𝑎 ∈ (𝑆 “ {𝑑}) ∧ 𝑏 ∈ (𝑆 “ {𝑐}))) → ((𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6766rexlimdvva 3294 . . . . . 6 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (∃𝑎 ∈ (𝑆 “ {𝑑})∃𝑏 ∈ (𝑆 “ {𝑐})(𝑎‘0) = (𝑏‘0) → 𝑑 = 𝑐))
6827, 67syl5 34 . . . . 5 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → (𝑑 𝑐𝑑 = 𝑐))
6926, 68mpd 15 . . . 4 (((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) ∧ (𝑑 𝐴𝑐 𝐴)) → 𝑑 = 𝑐)
7069ex 415 . . 3 ((𝐴𝑊 ∧ (𝑑𝐷𝑐𝐷)) → ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
7170ralrimivva 3191 . 2 (𝐴𝑊 → ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐))
72 breq1 5061 . . 3 (𝑑 = 𝑐 → (𝑑 𝐴𝑐 𝐴))
7372reu4 3721 . 2 (∃!𝑑𝐷 𝑑 𝐴 ↔ (∃𝑑𝐷 𝑑 𝐴 ∧ ∀𝑑𝐷𝑐𝐷 ((𝑑 𝐴𝑐 𝐴) → 𝑑 = 𝑐)))
7421, 71, 73sylanbrc 585 1 (𝐴𝑊 → ∃!𝑑𝐷 𝑑 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  cdif 3932  c0 4290  {csn 4560  cop 4566  cotp 4568   ciun 4911   class class class wbr 5058  cmpt 5138   I cid 5453   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552   Fn wfn 6344  ontowfo 6347  cfv 6349  (class class class)co 7150  cmpo 7152  1oc1o 8089  2oc2o 8090   Er wer 8280  0cc0 10531  1c1 10532  cmin 10864  ...cfz 12886  ..^cfzo 13027  chash 13684  Word cword 13855   splice csplice 14105  ⟨“cs2 14197   ~FG cefg 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-splice 14106  df-s2 14204  df-efg 18829
This theorem is referenced by:  efgred2  18873  frgpnabllem2  18988
  Copyright terms: Public domain W3C validator