MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1 Structured version   Visualization version   GIF version

Theorem efgs1 18088
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgs1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3716 . . . . 5 (𝐴 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → 𝐴𝑊)
2 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2716 . . . 4 (𝐴𝐷𝐴𝑊)
43s1cld 13338 . . 3 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ Word 𝑊)
5 s1nz 13341 . . . 4 ⟨“𝐴”⟩ ≠ ∅
6 eldifsn 4294 . . . 4 (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ↔ (⟨“𝐴”⟩ ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ≠ ∅))
75, 6mpbiran2 953 . . 3 (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ↔ ⟨“𝐴”⟩ ∈ Word 𝑊)
84, 7sylibr 224 . 2 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}))
9 s1fv 13345 . . 3 (𝐴𝐷 → (⟨“𝐴”⟩‘0) = 𝐴)
10 id 22 . . 3 (𝐴𝐷𝐴𝐷)
119, 10eqeltrd 2698 . 2 (𝐴𝐷 → (⟨“𝐴”⟩‘0) ∈ 𝐷)
12 s1len 13340 . . . . . 6 (#‘⟨“𝐴”⟩) = 1
1312a1i 11 . . . . 5 (𝐴𝐷 → (#‘⟨“𝐴”⟩) = 1)
1413oveq2d 6631 . . . 4 (𝐴𝐷 → (1..^(#‘⟨“𝐴”⟩)) = (1..^1))
15 fzo0 12449 . . . 4 (1..^1) = ∅
1614, 15syl6eq 2671 . . 3 (𝐴𝐷 → (1..^(#‘⟨“𝐴”⟩)) = ∅)
17 rzal 4051 . . 3 ((1..^(#‘⟨“𝐴”⟩)) = ∅ → ∀𝑖 ∈ (1..^(#‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
1816, 17syl 17 . 2 (𝐴𝐷 → ∀𝑖 ∈ (1..^(#‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1))))
19 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
20 efgval.r . . 3 = ( ~FG𝐼)
21 efgval2.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
22 efgval2.t . . 3 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
23 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
2419, 20, 21, 22, 2, 23efgsdm 18083 . 2 (⟨“𝐴”⟩ ∈ dom 𝑆 ↔ (⟨“𝐴”⟩ ∈ (Word 𝑊 ∖ {∅}) ∧ (⟨“𝐴”⟩‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘⟨“𝐴”⟩))(⟨“𝐴”⟩‘𝑖) ∈ ran (𝑇‘(⟨“𝐴”⟩‘(𝑖 − 1)))))
258, 11, 18, 24syl3anbrc 1244 1 (𝐴𝐷 → ⟨“𝐴”⟩ ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  {crab 2912  cdif 3557  c0 3897  {csn 4155  cop 4161  cotp 4163   ciun 4492  cmpt 4683   I cid 4994   × cxp 5082  dom cdm 5084  ran crn 5085  cfv 5857  (class class class)co 6615  cmpt2 6617  1𝑜c1o 7513  2𝑜c2o 7514  0cc0 9896  1c1 9897  cmin 10226  ...cfz 12284  ..^cfzo 12422  #chash 13073  Word cword 13246  ⟨“cs1 13249   splice csplice 13251  ⟨“cs2 13539   ~FG cefg 18059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-s1 13257
This theorem is referenced by:  efgsfo  18092
  Copyright terms: Public domain W3C validator