MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsf Structured version   Visualization version   GIF version

Theorem efgsf 18058
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgsf 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsf
StepHypRef Expression
1 id 22 . . . . . 6 (𝑚 = 𝑡𝑚 = 𝑡)
2 fveq2 6150 . . . . . . 7 (𝑚 = 𝑡 → (#‘𝑚) = (#‘𝑡))
32oveq1d 6620 . . . . . 6 (𝑚 = 𝑡 → ((#‘𝑚) − 1) = ((#‘𝑡) − 1))
41, 3fveq12d 6156 . . . . 5 (𝑚 = 𝑡 → (𝑚‘((#‘𝑚) − 1)) = (𝑡‘((#‘𝑡) − 1)))
54eleq1d 2688 . . . 4 (𝑚 = 𝑡 → ((𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
65ralrab2 3359 . . 3 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ ∀𝑡 ∈ (Word 𝑊 ∖ {∅})(((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
7 eldifi 3715 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡 ∈ Word 𝑊)
8 wrdf 13244 . . . . . 6 (𝑡 ∈ Word 𝑊𝑡:(0..^(#‘𝑡))⟶𝑊)
97, 8syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡:(0..^(#‘𝑡))⟶𝑊)
10 eldifsn 4292 . . . . . . 7 (𝑡 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑡 ∈ Word 𝑊𝑡 ≠ ∅))
11 lennncl 13259 . . . . . . 7 ((𝑡 ∈ Word 𝑊𝑡 ≠ ∅) → (#‘𝑡) ∈ ℕ)
1210, 11sylbi 207 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (#‘𝑡) ∈ ℕ)
13 fzo0end 12498 . . . . . 6 ((#‘𝑡) ∈ ℕ → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
1412, 13syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
159, 14ffvelrnd 6317 . . . 4 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊)
1615a1d 25 . . 3 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
176, 16mprgbir 2927 . 2 𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊
18 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
1918fmpt 6338 . 2 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
2017, 19mpbi 220 1 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  {crab 2916  cdif 3557  c0 3896  {csn 4153  cop 4159  cotp 4161   ciun 4490  cmpt 4678   I cid 4989   × cxp 5077  ran crn 5080  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  1𝑜c1o 7499  2𝑜c2o 7500  0cc0 9881  1c1 9882  cmin 10211  cn 10965  ...cfz 12265  ..^cfzo 12403  #chash 13054  Word cword 13225   splice csplice 13230  ⟨“cs2 13518   ~FG cefg 18035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233
This theorem is referenced by:  efgsdm  18059  efgsval  18060  efgsp1  18066  efgsfo  18068  efgredleme  18072  efgred  18077
  Copyright terms: Public domain W3C validator