MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsval2 Structured version   Visualization version   GIF version

Theorem efgsval2 18067
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgsval2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsval2
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 18065 . . 3 ((𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = ((𝐴 ++ ⟨“𝐵”⟩)‘((#‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)))
873ad2ant3 1082 . 2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = ((𝐴 ++ ⟨“𝐵”⟩)‘((#‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)))
9 lencl 13263 . . . . . . 7 (𝐴 ∈ Word 𝑊 → (#‘𝐴) ∈ ℕ0)
1093ad2ant1 1080 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (#‘𝐴) ∈ ℕ0)
1110nn0cnd 11297 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (#‘𝐴) ∈ ℂ)
12 ax-1cn 9938 . . . . 5 1 ∈ ℂ
13 pncan 10231 . . . . 5 (((#‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((#‘𝐴) + 1) − 1) = (#‘𝐴))
1411, 12, 13sylancl 693 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (((#‘𝐴) + 1) − 1) = (#‘𝐴))
15 simp1 1059 . . . . . . 7 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → 𝐴 ∈ Word 𝑊)
16 simp2 1060 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → 𝐵𝑊)
1716s1cld 13322 . . . . . . 7 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ⟨“𝐵”⟩ ∈ Word 𝑊)
18 ccatlen 13299 . . . . . . 7 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊) → (#‘(𝐴 ++ ⟨“𝐵”⟩)) = ((#‘𝐴) + (#‘⟨“𝐵”⟩)))
1915, 17, 18syl2anc 692 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (#‘(𝐴 ++ ⟨“𝐵”⟩)) = ((#‘𝐴) + (#‘⟨“𝐵”⟩)))
20 s1len 13324 . . . . . . 7 (#‘⟨“𝐵”⟩) = 1
2120oveq2i 6615 . . . . . 6 ((#‘𝐴) + (#‘⟨“𝐵”⟩)) = ((#‘𝐴) + 1)
2219, 21syl6eq 2671 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (#‘(𝐴 ++ ⟨“𝐵”⟩)) = ((#‘𝐴) + 1))
2322oveq1d 6619 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ((#‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (((#‘𝐴) + 1) − 1))
2411addid2d 10181 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (0 + (#‘𝐴)) = (#‘𝐴))
2514, 23, 243eqtr4d 2665 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ((#‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (0 + (#‘𝐴)))
2625fveq2d 6152 . 2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ((𝐴 ++ ⟨“𝐵”⟩)‘((#‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))))
27 1nn 10975 . . . . . . 7 1 ∈ ℕ
2820, 27eqeltri 2694 . . . . . 6 (#‘⟨“𝐵”⟩) ∈ ℕ
2928a1i 11 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (#‘⟨“𝐵”⟩) ∈ ℕ)
30 lbfzo0 12448 . . . . 5 (0 ∈ (0..^(#‘⟨“𝐵”⟩)) ↔ (#‘⟨“𝐵”⟩) ∈ ℕ)
3129, 30sylibr 224 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → 0 ∈ (0..^(#‘⟨“𝐵”⟩)))
32 ccatval3 13302 . . . 4 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(#‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = (⟨“𝐵”⟩‘0))
3315, 17, 31, 32syl3anc 1323 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = (⟨“𝐵”⟩‘0))
34 s1fv 13329 . . . 4 (𝐵𝑊 → (⟨“𝐵”⟩‘0) = 𝐵)
35343ad2ant2 1081 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (⟨“𝐵”⟩‘0) = 𝐵)
3633, 35eqtrd 2655 . 2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = 𝐵)
378, 26, 363eqtrd 2659 1 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  {crab 2911  cdif 3552  c0 3891  {csn 4148  cop 4154  cotp 4156   ciun 4485  cmpt 4673   I cid 4984   × cxp 5072  dom cdm 5074  ran crn 5075  cfv 5847  (class class class)co 6604  cmpt2 6606  1𝑜c1o 7498  2𝑜c2o 7499  cc 9878  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210  cn 10964  0cn0 11236  ...cfz 12268  ..^cfzo 12406  #chash 13057  Word cword 13230   ++ cconcat 13232  ⟨“cs1 13233   splice csplice 13235  ⟨“cs2 13523   ~FG cefg 18040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241
This theorem is referenced by:  efgsfo  18073  efgredlemd  18078  efgrelexlemb  18084
  Copyright terms: Public domain W3C validator