![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsval2 | Structured version Visualization version GIF version |
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgsval2 | ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsval 18344 | . . 3 ⊢ ((𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
8 | 7 | 3ad2ant3 1130 | . 2 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1))) |
9 | lencl 13510 | . . . . . . 7 ⊢ (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0) | |
10 | 9 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (♯‘𝐴) ∈ ℕ0) |
11 | 10 | nn0cnd 11545 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (♯‘𝐴) ∈ ℂ) |
12 | ax-1cn 10186 | . . . . 5 ⊢ 1 ∈ ℂ | |
13 | pncan 10479 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) | |
14 | 11, 12, 13 | sylancl 697 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴)) |
15 | simp1 1131 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → 𝐴 ∈ Word 𝑊) | |
16 | simp2 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → 𝐵 ∈ 𝑊) | |
17 | 16 | s1cld 13573 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → 〈“𝐵”〉 ∈ Word 𝑊) |
18 | ccatlen 13547 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) | |
19 | 15, 17, 18 | syl2anc 696 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + (♯‘〈“𝐵”〉))) |
20 | s1len 13576 | . . . . . . 7 ⊢ (♯‘〈“𝐵”〉) = 1 | |
21 | 20 | oveq2i 6824 | . . . . . 6 ⊢ ((♯‘𝐴) + (♯‘〈“𝐵”〉)) = ((♯‘𝐴) + 1) |
22 | 19, 21 | syl6eq 2810 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (♯‘(𝐴 ++ 〈“𝐵”〉)) = ((♯‘𝐴) + 1)) |
23 | 22 | oveq1d 6828 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (((♯‘𝐴) + 1) − 1)) |
24 | 11 | addid2d 10429 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (0 + (♯‘𝐴)) = (♯‘𝐴)) |
25 | 14, 23, 24 | 3eqtr4d 2804 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → ((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1) = (0 + (♯‘𝐴))) |
26 | 25 | fveq2d 6356 | . 2 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → ((𝐴 ++ 〈“𝐵”〉)‘((♯‘(𝐴 ++ 〈“𝐵”〉)) − 1)) = ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴)))) |
27 | 1nn 11223 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
28 | 20, 27 | eqeltri 2835 | . . . . . 6 ⊢ (♯‘〈“𝐵”〉) ∈ ℕ |
29 | 28 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (♯‘〈“𝐵”〉) ∈ ℕ) |
30 | lbfzo0 12702 | . . . . 5 ⊢ (0 ∈ (0..^(♯‘〈“𝐵”〉)) ↔ (♯‘〈“𝐵”〉) ∈ ℕ) | |
31 | 29, 30 | sylibr 224 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → 0 ∈ (0..^(♯‘〈“𝐵”〉))) |
32 | ccatval3 13551 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 〈“𝐵”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘〈“𝐵”〉))) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) | |
33 | 15, 17, 31, 32 | syl3anc 1477 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = (〈“𝐵”〉‘0)) |
34 | s1fv 13581 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (〈“𝐵”〉‘0) = 𝐵) | |
35 | 34 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (〈“𝐵”〉‘0) = 𝐵) |
36 | 33, 35 | eqtrd 2794 | . 2 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → ((𝐴 ++ 〈“𝐵”〉)‘(0 + (♯‘𝐴))) = 𝐵) |
37 | 8, 26, 36 | 3eqtrd 2798 | 1 ⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ++ 〈“𝐵”〉) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ 〈“𝐵”〉)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 {crab 3054 ∖ cdif 3712 ∅c0 4058 {csn 4321 〈cop 4327 〈cotp 4329 ∪ ciun 4672 ↦ cmpt 4881 I cid 5173 × cxp 5264 dom cdm 5266 ran crn 5267 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 1𝑜c1o 7722 2𝑜c2o 7723 ℂcc 10126 0cc0 10128 1c1 10129 + caddc 10131 − cmin 10458 ℕcn 11212 ℕ0cn0 11484 ...cfz 12519 ..^cfzo 12659 ♯chash 13311 Word cword 13477 ++ cconcat 13479 〈“cs1 13480 splice csplice 13482 〈“cs2 13786 ~FG cefg 18319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-concat 13487 df-s1 13488 |
This theorem is referenced by: efgsfo 18352 efgredlemd 18357 efgrelexlemb 18363 |
Copyright terms: Public domain | W3C validator |