MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p Structured version   Visualization version   GIF version

Theorem efgt1p 15458
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpcn 12389 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 nn0uz 12269 . . . 4 0 = (ℤ‘0)
3 0nn0 11901 . . . 4 0 ∈ ℕ0
4 1e0p1 12129 . . . 4 1 = (0 + 1)
5 0z 11981 . . . . 5 0 ∈ ℤ
6 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76eftval 15420 . . . . . . 7 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
83, 7ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
9 eft0val 15455 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
108, 9syl5eq 2868 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
115, 10seq1i 13373 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
12 1nn0 11902 . . . . . 6 1 ∈ ℕ0
136eftval 15420 . . . . . 6 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
1412, 13ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
15 fac1 13627 . . . . . . 7 (!‘1) = 1
1615oveq2i 7156 . . . . . 6 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
17 exp1 13425 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817oveq1d 7160 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
19 div1 11318 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2018, 19eqtrd 2856 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2116, 20syl5eq 2868 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2214, 21syl5eq 2868 . . . 4 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
232, 3, 4, 11, 22seqp1i 13376 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
241, 23syl 17 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
25 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
2612a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
276, 25, 26effsumlt 15454 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
2824, 27eqbrtrrd 5082 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7145  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664   / cdiv 11286  0cn0 11886  +crp 12379  seqcseq 13359  cexp 13419  !cfa 13623  expce 15405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411
This theorem is referenced by:  efgt1  15459  reeff1olem  24963  logdivlti  25130  logdifbnd  25499  emcllem4  25504  harmonicbnd4  25516
  Copyright terms: Public domain W3C validator