MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p Structured version   Visualization version   GIF version

Theorem efgt1p 14781
Description: The exponential function of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpcn 11793 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 nn0uz 11674 . . . 4 0 = (ℤ‘0)
3 0nn0 11259 . . . 4 0 ∈ ℕ0
4 1e0p1 11504 . . . 4 1 = (0 + 1)
5 0z 11340 . . . . 5 0 ∈ ℤ
6 eqid 2621 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76eftval 14743 . . . . . . 7 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
83, 7ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
9 eft0val 14778 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
108, 9syl5eq 2667 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
115, 10seq1i 12763 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
12 1nn0 11260 . . . . . 6 1 ∈ ℕ0
136eftval 14743 . . . . . 6 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
1412, 13ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
15 fac1 13012 . . . . . . 7 (!‘1) = 1
1615oveq2i 6621 . . . . . 6 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
17 exp1 12814 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817oveq1d 6625 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
19 div1 10668 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2018, 19eqtrd 2655 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2116, 20syl5eq 2667 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2214, 21syl5eq 2667 . . . 4 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
232, 3, 4, 11, 22seqp1i 12765 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
241, 23syl 17 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
25 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
2612a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
276, 25, 26effsumlt 14777 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
2824, 27eqbrtrrd 4642 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   + caddc 9891   < clt 10026   / cdiv 10636  0cn0 11244  +crp 11784  seqcseq 12749  cexp 12808  !cfa 13008  expce 14728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-fac 13009  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734
This theorem is referenced by:  efgt1  14782  reeff1olem  24121  logdivlti  24287  logdifbnd  24637  emcllem4  24642  harmonicbnd4  24654
  Copyright terms: Public domain W3C validator