Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p2 Structured version   Visualization version   GIF version

Theorem efgt1p2 14772
 Description: The exponential function of a positive real number is greater than the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11669 . . 3 0 = (ℤ‘0)
2 1nn0 11255 . . 3 1 ∈ ℕ0
3 df-2 11026 . . 3 2 = (1 + 1)
4 rpcn 11788 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
5 0nn0 11254 . . . . 5 0 ∈ ℕ0
6 1e0p1 11499 . . . . 5 1 = (0 + 1)
7 0z 11335 . . . . . 6 0 ∈ ℤ
8 eqid 2621 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 14735 . . . . . . . 8 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
105, 9ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
11 eft0val 14770 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
1210, 11syl5eq 2667 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
137, 12seq1i 12758 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
148eftval 14735 . . . . . . 7 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
152, 14ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
16 fac1 13007 . . . . . . . 8 (!‘1) = 1
1716oveq2i 6618 . . . . . . 7 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
18 exp1 12809 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1918oveq1d 6622 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
20 div1 10663 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2119, 20eqtrd 2655 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2217, 21syl5eq 2667 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2315, 22syl5eq 2667 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
241, 5, 6, 13, 23seqp1i 12760 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
254, 24syl 17 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
26 2nn0 11256 . . . . . 6 2 ∈ ℕ0
278eftval 14735 . . . . . 6 (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
2826, 27ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))
29 fac2 13009 . . . . . 6 (!‘2) = 2
3029oveq2i 6618 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
3128, 30eqtri 2643 . . . 4 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)
3231a1i 11 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
331, 2, 3, 25, 32seqp1i 12760 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
34 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
3526a1i 11 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
368, 34, 35effsumlt 14769 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
3733, 36eqbrtrrd 4639 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987   class class class wbr 4615   ↦ cmpt 4675  ‘cfv 5849  (class class class)co 6607  ℂcc 9881  0cc0 9883  1c1 9884   + caddc 9886   < clt 10021   / cdiv 10631  2c2 11017  ℕ0cn0 11239  ℝ+crp 11779  seqcseq 12744  ↑cexp 12803  !cfa 13003  expce 14720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-ico 12126  df-fz 12272  df-fzo 12410  df-fl 12536  df-seq 12745  df-exp 12804  df-fac 13004  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726 This theorem is referenced by:  cxp2limlem  24609  pntpbnd1a  25181
 Copyright terms: Public domain W3C validator