MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtf Structured version   Visualization version   GIF version

Theorem efgtf 18056
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtf (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
Distinct variable groups:   𝑎,𝑏,𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑎   𝑀,𝑎   𝑛,𝑏,𝑣,𝑤,𝑀   𝑇,𝑎,𝑏   𝑋,𝑎,𝑏   𝑊,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧   ,𝑎,𝑏,𝑦,𝑧   𝐼,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6213 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3614 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 simpl 473 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋𝑊)
53, 4sseldi 3581 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋 ∈ Word (𝐼 × 2𝑜))
6 simprr 795 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑏 ∈ (𝐼 × 2𝑜))
7 efgval2.m . . . . . . . . . . . 12 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
87efgmf 18047 . . . . . . . . . . 11 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
98ffvelrni 6314 . . . . . . . . . 10 (𝑏 ∈ (𝐼 × 2𝑜) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
109ad2antll 764 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
116, 10s2cld 13552 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜))
12 splcl 13440 . . . . . . . 8 ((𝑋 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2𝑜))
135, 11, 12syl2anc 692 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2𝑜))
141efgrcl 18049 . . . . . . . . 9 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
1514simprd 479 . . . . . . . 8 (𝑋𝑊𝑊 = Word (𝐼 × 2𝑜))
1615adantr 481 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑊 = Word (𝐼 × 2𝑜))
1713, 16eleqtrrd 2701 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
1817ralrimivva 2965 . . . . 5 (𝑋𝑊 → ∀𝑎 ∈ (0...(#‘𝑋))∀𝑏 ∈ (𝐼 × 2𝑜)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
19 eqid 2621 . . . . . 6 (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
2019fmpt2 7182 . . . . 5 (∀𝑎 ∈ (0...(#‘𝑋))∀𝑏 ∈ (𝐼 × 2𝑜)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊 ↔ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
2118, 20sylib 208 . . . 4 (𝑋𝑊 → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
22 ovex 6632 . . . . 5 (0...(#‘𝑋)) ∈ V
2314simpld 475 . . . . . 6 (𝑋𝑊𝐼 ∈ V)
24 2on 7513 . . . . . 6 2𝑜 ∈ On
25 xpexg 6913 . . . . . 6 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
2623, 24, 25sylancl 693 . . . . 5 (𝑋𝑊 → (𝐼 × 2𝑜) ∈ V)
27 xpexg 6913 . . . . 5 (((0...(#‘𝑋)) ∈ V ∧ (𝐼 × 2𝑜) ∈ V) → ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V)
2822, 26, 27sylancr 694 . . . 4 (𝑋𝑊 → ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V)
29 fvex 6158 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) ∈ V
301, 29eqeltri 2694 . . . . 5 𝑊 ∈ V
3130a1i 11 . . . 4 (𝑋𝑊𝑊 ∈ V)
32 fex2 7068 . . . 4 (((𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊 ∧ ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V ∧ 𝑊 ∈ V) → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V)
3321, 28, 31, 32syl3anc 1323 . . 3 (𝑋𝑊 → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V)
34 fveq2 6148 . . . . . 6 (𝑢 = 𝑋 → (#‘𝑢) = (#‘𝑋))
3534oveq2d 6620 . . . . 5 (𝑢 = 𝑋 → (0...(#‘𝑢)) = (0...(#‘𝑋)))
36 eqidd 2622 . . . . 5 (𝑢 = 𝑋 → (𝐼 × 2𝑜) = (𝐼 × 2𝑜))
37 oveq1 6611 . . . . 5 (𝑢 = 𝑋 → (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
3835, 36, 37mpt2eq123dv 6670 . . . 4 (𝑢 = 𝑋 → (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
39 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
40 oteq1 4379 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)
41 oteq2 4380 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
4240, 41eqtrd 2655 . . . . . . . . 9 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
4342oveq2d 6620 . . . . . . . 8 (𝑛 = 𝑎 → (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩))
44 id 22 . . . . . . . . . . 11 (𝑤 = 𝑏𝑤 = 𝑏)
45 fveq2 6148 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑀𝑤) = (𝑀𝑏))
4644, 45s2eqd 13545 . . . . . . . . . 10 (𝑤 = 𝑏 → ⟨“𝑤(𝑀𝑤)”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
4746oteq3d 4384 . . . . . . . . 9 (𝑤 = 𝑏 → ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)
4847oveq2d 6620 . . . . . . . 8 (𝑤 = 𝑏 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
4943, 48cbvmpt2v 6688 . . . . . . 7 (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑣)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
50 fveq2 6148 . . . . . . . . 9 (𝑣 = 𝑢 → (#‘𝑣) = (#‘𝑢))
5150oveq2d 6620 . . . . . . . 8 (𝑣 = 𝑢 → (0...(#‘𝑣)) = (0...(#‘𝑢)))
52 eqidd 2622 . . . . . . . 8 (𝑣 = 𝑢 → (𝐼 × 2𝑜) = (𝐼 × 2𝑜))
53 oveq1 6611 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
5451, 52, 53mpt2eq123dv 6670 . . . . . . 7 (𝑣 = 𝑢 → (𝑎 ∈ (0...(#‘𝑣)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5549, 54syl5eq 2667 . . . . . 6 (𝑣 = 𝑢 → (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5655cbvmptv 4710 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑢𝑊 ↦ (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5739, 56eqtri 2643 . . . 4 𝑇 = (𝑢𝑊 ↦ (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5838, 57fvmptg 6237 . . 3 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V) → (𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5933, 58mpdan 701 . 2 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
6059feq1d 5987 . . 3 (𝑋𝑊 → ((𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊 ↔ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
6121, 60mpbird 247 . 2 (𝑋𝑊 → (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
6259, 61jca 554 1 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  cop 4154  cotp 4156  cmpt 4673   I cid 4984   × cxp 5072  Oncon0 5682  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  1𝑜c1o 7498  2𝑜c2o 7499  0cc0 9880  ...cfz 12268  #chash 13057  Word cword 13230   splice csplice 13235  ⟨“cs2 13523   ~FG cefg 18040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-substr 13242  df-splice 13243  df-s2 13530
This theorem is referenced by:  efgtval  18057  efgval2  18058  efgtlen  18060  efginvrel2  18061  efgsp1  18071  efgredleme  18077  efgredlem  18081  efgrelexlemb  18084  efgcpbllemb  18089  frgpnabllem1  18197
  Copyright terms: Public domain W3C validator