MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efi4p Structured version   Visualization version   GIF version

Theorem efi4p 15484
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efi4p (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 10590 . . . 4 i ∈ ℂ
2 mulcl 10615 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efi4p.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
54ef4p 15460 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
63, 5syl 17 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
7 ax-1cn 10589 . . . . . 6 1 ∈ ℂ
8 addcl 10613 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
97, 3, 8sylancr 589 . . . . 5 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
103sqcld 13502 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ∈ ℂ)
1110halfcld 11876 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) ∈ ℂ)
12 3nn0 11909 . . . . . . 7 3 ∈ ℕ0
13 expcl 13441 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) ∈ ℂ)
143, 12, 13sylancl 588 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) ∈ ℂ)
15 6cn 11722 . . . . . . 7 6 ∈ ℂ
16 6re 11721 . . . . . . . 8 6 ∈ ℝ
17 6pos 11741 . . . . . . . 8 0 < 6
1816, 17gt0ne0ii 11170 . . . . . . 7 6 ≠ 0
19 divcl 11298 . . . . . . 7 ((((i · 𝐴)↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2015, 18, 19mp3an23 1449 . . . . . 6 (((i · 𝐴)↑3) ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2114, 20syl 17 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
229, 11, 21addassd 10657 . . . 4 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))))
237a1i 11 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2423, 3, 11, 21add4d 10862 . . . 4 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))) = ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))))
25 2nn0 11908 . . . . . . . . . . 11 2 ∈ ℕ0
26 mulexp 13462 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
271, 25, 26mp3an13 1448 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
28 i2 13559 . . . . . . . . . . . 12 (i↑2) = -1
2928oveq1i 7160 . . . . . . . . . . 11 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)))
31 sqcl 13478 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
3231mulm1d 11086 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
3327, 30, 323eqtrd 2860 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
3433oveq1d 7165 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = (-(𝐴↑2) / 2))
35 2cn 11706 . . . . . . . . . 10 2 ∈ ℂ
36 2ne0 11735 . . . . . . . . . 10 2 ≠ 0
37 divneg 11326 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3835, 36, 37mp3an23 1449 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3931, 38syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
4034, 39eqtr4d 2859 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = -((𝐴↑2) / 2))
4140oveq2d 7166 . . . . . 6 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 + -((𝐴↑2) / 2)))
4231halfcld 11876 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
43 negsub 10928 . . . . . . 7 ((1 ∈ ℂ ∧ ((𝐴↑2) / 2) ∈ ℂ) → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
447, 42, 43sylancr 589 . . . . . 6 (𝐴 ∈ ℂ → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
4541, 44eqtrd 2856 . . . . 5 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
46 mulexp 13462 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
471, 12, 46mp3an13 1448 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
48 i3 13560 . . . . . . . . . . 11 (i↑3) = -i
4948oveq1i 7160 . . . . . . . . . 10 ((i↑3) · (𝐴↑3)) = (-i · (𝐴↑3))
5047, 49syl6eq 2872 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = (-i · (𝐴↑3)))
5150oveq1d 7165 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = ((-i · (𝐴↑3)) / 6))
52 expcl 13441 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
5312, 52mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑3) ∈ ℂ)
54 negicn 10881 . . . . . . . . . 10 -i ∈ ℂ
5515, 18pm3.2i 473 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
56 divass 11310 . . . . . . . . . 10 ((-i ∈ ℂ ∧ (𝐴↑3) ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0)) → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5754, 55, 56mp3an13 1448 . . . . . . . . 9 ((𝐴↑3) ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5853, 57syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
59 divcl 11298 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℂ)
6015, 18, 59mp3an23 1449 . . . . . . . . . 10 ((𝐴↑3) ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
6153, 60syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
62 mulneg12 11072 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
631, 61, 62sylancr 589 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
6451, 58, 633eqtrd 2860 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = (i · -((𝐴↑3) / 6)))
6564oveq2d 7166 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6661negcld 10978 . . . . . . 7 (𝐴 ∈ ℂ → -((𝐴↑3) / 6) ∈ ℂ)
67 adddi 10620 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
681, 67mp3an1 1444 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6966, 68mpdan 685 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
70 negsub 10928 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7161, 70mpdan 685 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7271oveq2d 7166 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = (i · (𝐴 − ((𝐴↑3) / 6))))
7365, 69, 723eqtr2d 2862 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = (i · (𝐴 − ((𝐴↑3) / 6))))
7445, 73oveq12d 7168 . . . 4 (𝐴 ∈ ℂ → ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7522, 24, 743eqtrd 2860 . . 3 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7675oveq1d 7165 . 2 (𝐴 ∈ ℂ → ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
776, 76eqtrd 2856 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cmpt 5139  cfv 6350  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865   / cdiv 11291  2c2 11686  3c3 11687  4c4 11688  6c6 11690  0cn0 11891  cuz 12237  cexp 13423  !cfa 13627  Σcsu 15036  expce 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415
This theorem is referenced by:  resin4p  15485  recos4p  15486
  Copyright terms: Public domain W3C validator