MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efieq Structured version   Visualization version   GIF version

Theorem efieq 15504
Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
efieq ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))

Proof of Theorem efieq
StepHypRef Expression
1 recn 10615 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 10615 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 efival 15493 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4 efival 15493 . . . 4 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
53, 4eqeqan12d 2835 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵)))))
61, 2, 5syl2an 595 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵)))))
7 recoscl 15482 . . . 4 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
8 resincl 15481 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
97, 8jca 512 . . 3 (𝐴 ∈ ℝ → ((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ))
10 recoscl 15482 . . . 4 (𝐵 ∈ ℝ → (cos‘𝐵) ∈ ℝ)
11 resincl 15481 . . . 4 (𝐵 ∈ ℝ → (sin‘𝐵) ∈ ℝ)
1210, 11jca 512 . . 3 (𝐵 ∈ ℝ → ((cos‘𝐵) ∈ ℝ ∧ (sin‘𝐵) ∈ ℝ))
13 cru 11618 . . 3 ((((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) ∧ ((cos‘𝐵) ∈ ℝ ∧ (sin‘𝐵) ∈ ℝ)) → (((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵))) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
149, 12, 13syl2an 595 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((cos‘𝐴) + (i · (sin‘𝐴))) = ((cos‘𝐵) + (i · (sin‘𝐵))) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
156, 14bitrd 280 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  ici 10527   + caddc 10528   · cmul 10530  expce 15403  sincsin 15405  cosccos 15406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator