MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efival Structured version   Visualization version   GIF version

Theorem efival 15493
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 10584 . . . . . 6 i ∈ ℂ
2 mulcl 10609 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 686 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efcl 15424 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
53, 4syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
6 negicn 10875 . . . . . 6 -i ∈ ℂ
7 mulcl 10609 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
86, 7mpan 686 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
9 efcl 15424 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
115, 10addcld 10648 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
125, 10subcld 10985 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
13 2cn 11700 . . . . 5 2 ∈ ℂ
14 2ne0 11729 . . . . 5 2 ≠ 0
1513, 14pm3.2i 471 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
16 divdir 11311 . . . 4 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1715, 16mp3an3 1441 . . 3 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1811, 12, 17syl2anc 584 . 2 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1910, 5pncan3d 10988 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (exp‘(i · 𝐴)))
2019oveq2d 7161 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
215, 10, 12addassd 10651 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))))
2252timesd 11868 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
2320, 21, 223eqtr4d 2863 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (2 · (exp‘(i · 𝐴))))
2423oveq1d 7160 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((2 · (exp‘(i · 𝐴))) / 2))
25 divcan3 11312 . . . . 5 (((exp‘(i · 𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2613, 14, 25mp3an23 1444 . . . 4 ((exp‘(i · 𝐴)) ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
275, 26syl 17 . . 3 (𝐴 ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2824, 27eqtr2d 2854 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2))
29 cosval 15464 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
30 2mulicn 11848 . . . . . . 7 (2 · i) ∈ ℂ
31 2muline0 11849 . . . . . . 7 (2 · i) ≠ 0
3230, 31pm3.2i 471 . . . . . 6 ((2 · i) ∈ ℂ ∧ (2 · i) ≠ 0)
33 div12 11308 . . . . . 6 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((2 · i) ∈ ℂ ∧ (2 · i) ≠ 0)) → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
341, 32, 33mp3an13 1443 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
3512, 34syl 17 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
36 sinval 15463 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3736oveq2d 7161 . . . 4 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))))
38 divrec 11302 . . . . . . 7 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
3913, 14, 38mp3an23 1444 . . . . . 6 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
4012, 39syl 17 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
411mulid2i 10634 . . . . . . . 8 (1 · i) = i
4241oveq1i 7155 . . . . . . 7 ((1 · i) / (2 · i)) = (i / (2 · i))
43 ine0 11063 . . . . . . . . . . 11 i ≠ 0
441, 43dividi 11361 . . . . . . . . . 10 (i / i) = 1
4544oveq2i 7156 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 / 2) · 1)
46 ax-1cn 10583 . . . . . . . . . 10 1 ∈ ℂ
4746, 13, 1, 1, 14, 43divmuldivi 11388 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 · i) / (2 · i))
4845, 47eqtr3i 2843 . . . . . . . 8 ((1 / 2) · 1) = ((1 · i) / (2 · i))
49 halfcn 11840 . . . . . . . . 9 (1 / 2) ∈ ℂ
5049mulid1i 10633 . . . . . . . 8 ((1 / 2) · 1) = (1 / 2)
5148, 50eqtr3i 2843 . . . . . . 7 ((1 · i) / (2 · i)) = (1 / 2)
5242, 51eqtr3i 2843 . . . . . 6 (i / (2 · i)) = (1 / 2)
5352oveq2i 7156 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2))
5440, 53syl6eqr 2871 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
5535, 37, 543eqtr4d 2863 . . 3 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2))
5629, 55oveq12d 7163 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
5718, 28, 563eqtr4d 2863 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526  ici 10527   + caddc 10528   · cmul 10530  cmin 10858  -cneg 10859   / cdiv 11285  2c2 11680  expce 15403  sincsin 15405  cosccos 15406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412
This theorem is referenced by:  efmival  15494  efeul  15503  efieq  15504  sinadd  15505  cosadd  15506  absefi  15537  demoivre  15541  efhalfpi  24984  efipi  24986  ef2pi  24990  efimpi  25004  efif1olem4  25056  1cubrlem  25346  asinsin  25397  atantan  25428
  Copyright terms: Public domain W3C validator