Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflog Structured version   Visualization version   GIF version

Theorem eflog 24244
 Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
eflog ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)

Proof of Theorem eflog
StepHypRef Expression
1 dflog2 24228 . . . 4 log = (exp ↾ ran log)
21fveq1i 6154 . . 3 (log‘𝐴) = ((exp ↾ ran log)‘𝐴)
32fveq2i 6156 . 2 ((exp ↾ ran log)‘(log‘𝐴)) = ((exp ↾ ran log)‘((exp ↾ ran log)‘𝐴))
4 logrncl 24235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log)
5 fvres 6169 . . 3 ((log‘𝐴) ∈ ran log → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴)))
64, 5syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘(log‘𝐴)) = (exp‘(log‘𝐴)))
7 eldifsn 4292 . . 3 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
8 eff1o2 24231 . . . 4 (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0})
9 f1ocnvfv2 6493 . . . 4 (((exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) ∧ 𝐴 ∈ (ℂ ∖ {0})) → ((exp ↾ ran log)‘((exp ↾ ran log)‘𝐴)) = 𝐴)
108, 9mpan 705 . . 3 (𝐴 ∈ (ℂ ∖ {0}) → ((exp ↾ ran log)‘((exp ↾ ran log)‘𝐴)) = 𝐴)
117, 10sylbir 225 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp ↾ ran log)‘((exp ↾ ran log)‘𝐴)) = 𝐴)
123, 6, 113eqtr3a 2679 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∖ cdif 3556  {csn 4153  ◡ccnv 5078  ran crn 5080   ↾ cres 5081  –1-1-onto→wf1o 5851  ‘cfv 5852  ℂcc 9886  0cc0 9888  expce 14728  logclog 24222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224 This theorem is referenced by:  logeq0im1  24245  reeflog  24248  lognegb  24257  explog  24261  relog  24264  eflogeq  24269  logcj  24273  efiarg  24274  logimul  24281  logneg2  24282  logmul2  24283  logdiv2  24284  logcnlem4  24308  cxpeq  24415  logrec  24418  cxplogb  24441  ang180lem1  24456  asinneg  24530  efiasin  24532  efiatan2  24561  2efiatan  24562  atantan  24567  birthdaylem2  24596  gamcvg  24699  gamp1  24701  gamcvg2lem  24702  iprodgam  31371  stirlinglem14  39637
 Copyright terms: Public domain W3C validator