MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflt Structured version   Visualization version   GIF version

Theorem eflt 15472
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
eflt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))

Proof of Theorem eflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1541 . 2
2 fveq2 6672 . . 3 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
3 fveq2 6672 . . 3 (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴))
4 fveq2 6672 . . 3 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
5 ssid 3991 . . 3 ℝ ⊆ ℝ
6 reefcl 15442 . . . 4 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ)
76adantl 484 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
8 simp2 1133 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9 simp1 1132 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
108, 9resubcld 11070 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
11 posdif 11135 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
1211biimp3a 1465 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦𝑥))
1310, 12elrpd 12431 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
14 efgt1 15471 . . . . . . . 8 ((𝑦𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦𝑥)))
169reefcld 15443 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ)
1710reefcld 15443 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦𝑥)) ∈ ℝ)
18 efgt0 15458 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 < (exp‘𝑥))
199, 18syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥))
20 ltmulgt11 11502 . . . . . . . 8 (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2116, 17, 19, 20syl3anc 1367 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2215, 21mpbid 234 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥))))
239recnd 10671 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ)
2410recnd 10671 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
25 efadd 15449 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
2623, 24, 25syl2anc 586 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
278recnd 10671 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
2823, 27pncan3d 11002 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦𝑥)) = 𝑦)
2928fveq2d 6676 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = (exp‘𝑦))
3026, 29eqtr3d 2860 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦𝑥))) = (exp‘𝑦))
3122, 30breqtrd 5094 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦))
32313expia 1117 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
3332adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
342, 3, 4, 5, 7, 33ltord1 11168 . 2 ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
351, 34mpan 688 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872  +crp 12392  expce 15417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423
This theorem is referenced by:  efle  15473  reefiso  25038  logdivlti  25205  divlogrlim  25220  cxplt  25279  birthday  25534  cxploglim  25557  bposlem6  25867  bposlem9  25870  pntpbnd1a  26163  pntibndlem2  26169  pntlemb  26175  ostth2lem3  26213  ostth2  26215
  Copyright terms: Public domain W3C validator