MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflt Structured version   Visualization version   GIF version

Theorem eflt 15460
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
eflt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))

Proof of Theorem eflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1532 . 2
2 fveq2 6664 . . 3 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
3 fveq2 6664 . . 3 (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴))
4 fveq2 6664 . . 3 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
5 ssid 3988 . . 3 ℝ ⊆ ℝ
6 reefcl 15430 . . . 4 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ)
76adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
8 simp2 1129 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9 simp1 1128 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
108, 9resubcld 11057 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
11 posdif 11122 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
1211biimp3a 1460 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦𝑥))
1310, 12elrpd 12418 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
14 efgt1 15459 . . . . . . . 8 ((𝑦𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦𝑥)))
169reefcld 15431 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ)
1710reefcld 15431 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦𝑥)) ∈ ℝ)
18 efgt0 15446 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 < (exp‘𝑥))
199, 18syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥))
20 ltmulgt11 11489 . . . . . . . 8 (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2116, 17, 19, 20syl3anc 1363 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2215, 21mpbid 233 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥))))
239recnd 10658 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ)
2410recnd 10658 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
25 efadd 15437 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
2623, 24, 25syl2anc 584 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
278recnd 10658 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
2823, 27pncan3d 10989 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦𝑥)) = 𝑦)
2928fveq2d 6668 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = (exp‘𝑦))
3026, 29eqtr3d 2858 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦𝑥))) = (exp‘𝑦))
3122, 30breqtrd 5084 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦))
32313expia 1113 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
3332adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
342, 3, 4, 5, 7, 33ltord1 11155 . 2 ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
351, 34mpan 686 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wtru 1529  wcel 2105   class class class wbr 5058  cfv 6349  (class class class)co 7145  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  +crp 12379  expce 15405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411
This theorem is referenced by:  efle  15461  reefiso  24965  logdivlti  25130  divlogrlim  25145  cxplt  25204  birthday  25460  cxploglim  25483  bposlem6  25793  bposlem9  25796  pntpbnd1a  26089  pntibndlem2  26095  pntlemb  26101  ostth2lem3  26139  ostth2  26141
  Copyright terms: Public domain W3C validator