MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopnlem2 Structured version   Visualization version   GIF version

Theorem efopnlem2 24316
Description: Lemma for efopn 24317. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopnlem2 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽)

Proof of Theorem efopnlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 logf1o 24228 . . . . . . . 8 log:(ℂ ∖ {0})–1-1-onto→ran log
2 f1orn 6109 . . . . . . . . 9 (log:(ℂ ∖ {0})–1-1-onto→ran log ↔ (log Fn (ℂ ∖ {0}) ∧ Fun log))
32simprbi 480 . . . . . . . 8 (log:(ℂ ∖ {0})–1-1-onto→ran log → Fun log)
4 funcnvres 5930 . . . . . . . 8 (Fun log → (log ↾ (ℂ ∖ (-∞(,]0))) = (log ↾ (log “ (ℂ ∖ (-∞(,]0)))))
51, 3, 4mp2b 10 . . . . . . 7 (log ↾ (ℂ ∖ (-∞(,]0))) = (log ↾ (log “ (ℂ ∖ (-∞(,]0))))
6 df-log 24220 . . . . . . . . . 10 log = (exp ↾ (ℑ “ (-π(,]π)))
76cnveqi 5262 . . . . . . . . 9 log = (exp ↾ (ℑ “ (-π(,]π)))
8 relres 5390 . . . . . . . . . 10 Rel (exp ↾ (ℑ “ (-π(,]π)))
9 dfrel2 5547 . . . . . . . . . 10 (Rel (exp ↾ (ℑ “ (-π(,]π))) ↔ (exp ↾ (ℑ “ (-π(,]π))) = (exp ↾ (ℑ “ (-π(,]π))))
108, 9mpbi 220 . . . . . . . . 9 (exp ↾ (ℑ “ (-π(,]π))) = (exp ↾ (ℑ “ (-π(,]π)))
117, 10eqtri 2643 . . . . . . . 8 log = (exp ↾ (ℑ “ (-π(,]π)))
1211reseq1i 5357 . . . . . . 7 (log ↾ (log “ (ℂ ∖ (-∞(,]0)))) = ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0))))
13 imassrn 5441 . . . . . . . . 9 (log “ (ℂ ∖ (-∞(,]0))) ⊆ ran log
14 logrn 24222 . . . . . . . . 9 ran log = (ℑ “ (-π(,]π))
1513, 14sseqtri 3621 . . . . . . . 8 (log “ (ℂ ∖ (-∞(,]0))) ⊆ (ℑ “ (-π(,]π))
16 resabs1 5391 . . . . . . . 8 ((log “ (ℂ ∖ (-∞(,]0))) ⊆ (ℑ “ (-π(,]π)) → ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0)))))
1715, 16ax-mp 5 . . . . . . 7 ((exp ↾ (ℑ “ (-π(,]π))) ↾ (log “ (ℂ ∖ (-∞(,]0)))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0))))
185, 12, 173eqtri 2647 . . . . . 6 (log ↾ (ℂ ∖ (-∞(,]0))) = (exp ↾ (log “ (ℂ ∖ (-∞(,]0))))
1918imaeq1i 5427 . . . . 5 ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅))
20 cnxmet 22495 . . . . . . . . . . . . 13 (abs ∘ − ) ∈ (∞Met‘ℂ)
2120a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → (abs ∘ − ) ∈ (∞Met‘ℂ))
22 0cnd 9984 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → 0 ∈ ℂ)
23 rpxr 11791 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2423adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑅 < π) → 𝑅 ∈ ℝ*)
25 blssm 22142 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2621, 22, 24, 25syl3anc 1323 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ ℂ)
2726sselda 3587 . . . . . . . . . 10 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑥 ∈ ℂ)
2827imcld 13876 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) ∈ ℝ)
29 efopnlem1 24315 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝑥)) < π)
30 pire 24127 . . . . . . . . . . . . . 14 π ∈ ℝ
31 abslt 13995 . . . . . . . . . . . . . 14 (((ℑ‘𝑥) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘𝑥)) < π ↔ (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
3228, 30, 31sylancl 693 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → ((abs‘(ℑ‘𝑥)) < π ↔ (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
3329, 32mpbid 222 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (-π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
3433simpld 475 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → -π < (ℑ‘𝑥))
3533simprd 479 . . . . . . . . . . 11 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) < π)
3630renegcli 10293 . . . . . . . . . . . . 13 -π ∈ ℝ
3736rexri 10048 . . . . . . . . . . . 12 -π ∈ ℝ*
3830rexri 10048 . . . . . . . . . . . 12 π ∈ ℝ*
39 elioo2 12165 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((ℑ‘𝑥) ∈ (-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π)))
4037, 38, 39mp2an 707 . . . . . . . . . . 11 ((ℑ‘𝑥) ∈ (-π(,)π) ↔ ((ℑ‘𝑥) ∈ ℝ ∧ -π < (ℑ‘𝑥) ∧ (ℑ‘𝑥) < π))
4128, 34, 35, 40syl3anbrc 1244 . . . . . . . . . 10 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝑥) ∈ (-π(,)π))
42 imf 13794 . . . . . . . . . . 11 ℑ:ℂ⟶ℝ
43 ffn 6007 . . . . . . . . . . 11 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
44 elpreima 6298 . . . . . . . . . . 11 (ℑ Fn ℂ → (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π))))
4542, 43, 44mp2b 10 . . . . . . . . . 10 (𝑥 ∈ (ℑ “ (-π(,)π)) ↔ (𝑥 ∈ ℂ ∧ (ℑ‘𝑥) ∈ (-π(,)π)))
4627, 41, 45sylanbrc 697 . . . . . . . . 9 (((𝑅 ∈ ℝ+𝑅 < π) ∧ 𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑥 ∈ (ℑ “ (-π(,)π)))
4746ex 450 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑅 < π) → (𝑥 ∈ (0(ball‘(abs ∘ − ))𝑅) → 𝑥 ∈ (ℑ “ (-π(,)π))))
4847ssrdv 3593 . . . . . . 7 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ (ℑ “ (-π(,)π)))
49 df-ima 5092 . . . . . . . 8 (log “ (ℂ ∖ (-∞(,]0))) = ran (log ↾ (ℂ ∖ (-∞(,]0)))
50 eqid 2621 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
5150logf1o2 24309 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–1-1-onto→(ℑ “ (-π(,)π))
52 f1ofo 6106 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–1-1-onto→(ℑ “ (-π(,)π)) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–onto→(ℑ “ (-π(,)π)))
53 forn 6080 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))–onto→(ℑ “ (-π(,)π)) → ran (log ↾ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π)))
5451, 52, 53mp2b 10 . . . . . . . 8 ran (log ↾ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π))
5549, 54eqtri 2643 . . . . . . 7 (log “ (ℂ ∖ (-∞(,]0))) = (ℑ “ (-π(,)π))
5648, 55syl6sseqr 3636 . . . . . 6 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖ (-∞(,]0))))
57 resima2 5396 . . . . . 6 ((0(ball‘(abs ∘ − ))𝑅) ⊆ (log “ (ℂ ∖ (-∞(,]0))) → ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
5856, 57syl 17 . . . . 5 ((𝑅 ∈ ℝ+𝑅 < π) → ((exp ↾ (log “ (ℂ ∖ (-∞(,]0)))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
5919, 58syl5eq 2667 . . . 4 ((𝑅 ∈ ℝ+𝑅 < π) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) = (exp “ (0(ball‘(abs ∘ − ))𝑅)))
6050logcn 24306 . . . . . 6 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
61 difss 3720 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
62 ssid 3608 . . . . . . 7 ℂ ⊆ ℂ
63 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
64 eqid 2621 . . . . . . . 8 (𝐽t (ℂ ∖ (-∞(,]0))) = (𝐽t (ℂ ∖ (-∞(,]0)))
6563cnfldtop 22506 . . . . . . . . . 10 𝐽 ∈ Top
6663cnfldtopon 22505 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
6766toponunii 20652 . . . . . . . . . . 11 ℂ = 𝐽
6867restid 16022 . . . . . . . . . 10 (𝐽 ∈ Top → (𝐽t ℂ) = 𝐽)
6965, 68ax-mp 5 . . . . . . . . 9 (𝐽t ℂ) = 𝐽
7069eqcomi 2630 . . . . . . . 8 𝐽 = (𝐽t ℂ)
7163, 64, 70cncfcn 22631 . . . . . . 7 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽))
7261, 62, 71mp2an 707 . . . . . 6 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽)
7360, 72eleqtri 2696 . . . . 5 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽)
7463cnfldtopn 22504 . . . . . . 7 𝐽 = (MetOpen‘(abs ∘ − ))
7574blopn 22224 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽)
7621, 22, 24, 75syl3anc 1323 . . . . 5 ((𝑅 ∈ ℝ+𝑅 < π) → (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽)
77 cnima 20988 . . . . 5 (((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((𝐽t (ℂ ∖ (-∞(,]0))) Cn 𝐽) ∧ (0(ball‘(abs ∘ − ))𝑅) ∈ 𝐽) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
7873, 76, 77sylancr 694 . . . 4 ((𝑅 ∈ ℝ+𝑅 < π) → ((log ↾ (ℂ ∖ (-∞(,]0))) “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
7959, 78eqeltrrd 2699 . . 3 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))))
8050logdmopn 24308 . . . . 5 (ℂ ∖ (-∞(,]0)) ∈ (TopOpen‘ℂfld)
8180, 63eleqtrri 2697 . . . 4 (ℂ ∖ (-∞(,]0)) ∈ 𝐽
82 restopn2 20900 . . . 4 ((𝐽 ∈ Top ∧ (ℂ ∖ (-∞(,]0)) ∈ 𝐽) → ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))) ↔ ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0)))))
8365, 81, 82mp2an 707 . . 3 ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ (𝐽t (ℂ ∖ (-∞(,]0))) ↔ ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0))))
8479, 83sylib 208 . 2 ((𝑅 ∈ ℝ+𝑅 < π) → ((exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽 ∧ (exp “ (0(ball‘(abs ∘ − ))𝑅)) ⊆ (ℂ ∖ (-∞(,]0))))
8584simpld 475 1 ((𝑅 ∈ ℝ+𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cdif 3556  wss 3559  {csn 4153   class class class wbr 4618  ccnv 5078  ran crn 5080  cres 5081  cima 5082  ccom 5083  Rel wrel 5084  Fun wfun 5846   Fn wfn 5847  wf 5848  ontowfo 5850  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  -∞cmnf 10023  *cxr 10024   < clt 10025  cmin 10217  -cneg 10218  +crp 11783  (,)cioo 12124  (,]cioc 12125  cim 13779  abscabs 13915  expce 14724  πcpi 14729  t crest 16009  TopOpenctopn 16010  ∞Metcxmt 19659  ballcbl 19661  fldccnfld 19674  Topctop 20626   Cn ccn 20947  cnccncf 22598  logclog 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-tan 14734  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-cmp 21109  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220
This theorem is referenced by:  efopn  24317
  Copyright terms: Public domain W3C validator